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The converse is true, but harder, and needs a preparatory result – which
is interesting and important in its own right.
Separating Hyperplane Theorem (SHT).

In a vector space V , a hyperplane is a translate of a (vector) subspace
U of codimension 1 – that is, U and some one-dimensional subspace, say R,
together span V : V is the direct sum V = U ⊕R (e.g., R3 = R2 ⊕R). Then

H = [f, α] := {x : f(x) = α}

for some α and linear functional f . In the finite-dimensional case, of dimen-
sion n, say, one can think of f(x) as an inner product,

f(x) = f.x = f1x1 + . . .+ fnxn.

The hyperplane H = [f, α] separates sets A,B ⊂ V if

f(x) ≥ α ∀ x ∈ A, f(x) ≤ α ∀ x ∈ B

(or the same inequalities with A,B, or ≥,≤, interchanged).
Call a set A in a vector space V convex if

x, y ∈ A, 0 ≤ λ ≤ 1 ⇒ λx+ (1− λ)y ∈ A

– that is, A contains the line-segment joining any pair of its points.
We can now state (without proof) the SHT (see e,g, [BK] App. C).

SHT. Any two non-empty disjoint convex sets in a vector space can be sep-
arated by a hyperplane.

A cone is a subset of a vector space closed under vector addition and
multiplication by positive constants (so: like a vector subspace, but with a
sign-restriction in scalar multiplication).

We turn now to the proof of the converse.

Proof of the converse (not examinable). ⇒: Write Γ for the cone of strictly
positive random variables. Viability (NA) says that for any admissible strat-
egy H,

V0(H) = 0 ⇒ ṼN(H) /∈ Γ. (∗)
To any admissible process (H1

n, · · · , Hd
n), we associate its discounted cu-

mulative gain process

G̃n(H) := Σn
1 (H

1
j∆S̃1

j + · · ·+Hd
j∆S̃d

j ).
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By the Proposition, we can extend (H1, · · · , Hd) to a unique predictable pro-
cess (H0

n) such that the strategy H = ((H0
n, H

1
n, · · · , Hd

n)) is self-financing
with initial value zero. By NA, G̃N(H) = 0 – that is, G̃N(H) /∈ Γ.

We now form the set V of random variables G̃N(H), withH = (H1, · · · , Hd)
a previsible process. This is a vector subspace of the vector space RΩ of ran-
dom variables on Ω, by linearity of the gain process G(H) in H. By (∗), this
subspace V does not meet Γ. So V does not meet the subset

K := {X ∈ Γ : ΣωX(ω) = 1}.

Now K is a convex set not meeting the origin. By the Separating Hyper-
plane Theorem, there is a vector λ = (λ(ω) : ω ∈ Ω) such that for all X ∈ K

λ.X := Σωλ(ω)X(ω) > 0, (1)

but for all G̃N(H) in V,

λ.G̃N(H) = Σωλ(ω)G̃N(H)(ω) = 0. (2)

Choosing each ω ∈ Ω successively and taking X to be 1 on this ω and zero
elsewhere, (1) tells us that each λ(ω) > 0. So

P ∗({ω}) := λ(ω)/(Σω′∈Ωλ(ω
′))

defines a probability measure equivalent to P (no non-empty null sets). With
E∗ as P ∗-expectation, (2) says that

E∗[G̃N(H)] = 0 : E∗[ΣN
1 Hj.∆S̃j] = 0.

In particular, choosing for each i to hold only stock i,

E∗[ΣN
1 H

i
j∆S̃i

j] = 0 (i = 1, · · · , d).

By the Martingale Transform Lemma, this says that the discounted price
processes (S̃i

n) are P ∗-martingales. //

§3. Complete Markets: Uniqueness of EMMs.
A contingent claim (option, etc.) can be defined by its payoff function, h

say, which should be non-negative (options confer rights, not obligations, so
negative values are avoided by not exercising the option), and FN -measurable
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(so that we know how to evaluate h at the terminal time N).

Definition. A contingent claim defined by the payoff function h is attain-
able if there is an admissible strategy worth (i.e., replicating) h at time N .
A market is complete if every contingent claim is attainable.

Theorem (Completeness Theorem: complete iff EMM unique). A
viable market is complete iff there exists a unique probability measure P ∗

equivalent to P under which discounted asset prices are martingales – that
is, iff equivalent martingale measures are unique.

Proof. ⇒: Assume viability and completeness. Then for any FN -measurable
random variable h ≥ 0, there exists an admissible (so SF) strategy H repli-
cating h: h = VN(H). As H is SF, by §1

h/S0
N = ṼN(H) = V0(H) + ΣN

1 Hj.∆S̃j.

We know by the Theorem of §2 that an equivalent martingale measure
P ∗ exists; we have to prove uniqueness. So, let P1, P2 be two such equivalent
martingale measures. For i = 1, 2, (Ṽn(H))Nn=0 is a Pi-martingale. So,

Ei[ṼN(H)] = Ei[V0(H)] = V0(H),

since the value at time zero is non-random (F0 = {∅,Ω}). So

E1[h/S
0
N ] = E2[h/S

0
N ].

Since h is arbitrary, E1, E2 have to agree on integrating all non-negative
integrands. Taking negatives and using linearity: they have to agree on non-
positive integrands also. Splitting an arbitrary integrand into its positive and
negative parts: they have to agree on all integrands. Now Ei is expectation
(i.e., integration) with respect to the measure Pi, and measures that agree
on integrating all integrands must coincide. So P1 = P2. //

Before proving the converse, we prove a lemma. Recall that an admissible
strategy is a SF strategy with all values non-negative. The Lemma shows
that the non-negativity of contingent claims extends to all values of any SF
strategy replicating it – in other words, this gives equivalence of admissible
and SF replicating strategies. [SF: isolated from external wealth; admissible:
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actually worth something. These sound similar; the Lemma shows they are
the same here. So we only need one term; we use SF as it is shorter, but
w.l.o.g. this means admissible also.]

Lemma. In a viable market, any attainable h (i.e., any h that can be repli-
cated by a SF strategyH) can also be replicated by an admissible strategyH.

Proof. If H is SF and P ∗ is an equivalent martingale measure under which
discounted prices S̃ are P ∗-martingales (such P ∗ exist by viability and the
Theorem of §2), Ṽn(H) is also a P ∗-martingale, being the martingale trans-
form of S̃ by H (see §1). So

Ṽn(H) = E∗[ṼN(H)|Fn] (n = 0, 1, · · · , N).

If H replicates h, VN(H) = h ≥ 0, so discounting, ṼN(H) ≥ 0, so the above
equation gives Ṽn(H) ≥ 0 for each n. Thus all the values at each time n are
non-negative – not just the final value at time N – so H is admissible. //

Proof of the Theorem (continued). ⇐ (not examinable): Assume the market
is viable but incomplete: then there exists a non-attainable h ≥ 0. By the
Proposition of §1, we may confine attention to the risky assets S1, · · · , Sd, as
these suffice to tell us how to handle the bank account S0.

Call Ṽ the set of random variables of the form

U0 + ΣN
1 Hn.∆S̃n

with U0 F0-measurable (i.e. deterministic) and ((H1
n, · · · , Hd

n))
N
n=0 predictable;

this is a vector space. (Here (H1, . . . , Hd) extends to H := (H0, H1, . . . , Hd),
by the Proposition of §1, and H can be any strategy here.) Then as h is not
attainable, the discounted value h/S0

N does not belong to Ṽ , so Ṽ is a proper
subspace of the vector space RΩ of all random variables on Ω. Let P ∗ be a
probability measure equivalent to P under which discounted prices are mar-
tingales (such P ∗ exist by viability, by the Theorem of §2). Define the scalar
product

(X,Y ) → E∗[XY ]

on random variables on Ω. Since Ṽ is a proper subspace, by Gram-Schmidt
orthogonalisation there exists a non-zero random variable X orthogonal to
Ṽ . That is,

E∗[X] = 0.
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