m3a22l15tex
Lecture 15 13.10.2015
The converse is true, but harder, and needs a preparatory result - which is interesting and important in its own right.
Separating Hyperplane Theorem (SHT).
In a vector space V, a hyperplane is a translate of a (vector) subspace U of codimension 1 - that is, U and some one-dimensional subspace, say \mathbb{R}, together span $V: V$ is the direct sum $V=U \oplus \mathbb{R}$ (e.g., $\left.\mathbb{R}^{3}=\mathbb{R}^{2} \oplus \mathbb{R}\right)$. Then

$$
H=[f, \alpha]:=\{x: f(x)=\alpha\}
$$

for some α and linear functional f. In the finite-dimensional case, of dimension n, say, one can think of $f(x)$ as an inner product,

$$
f(x)=f . x=f_{1} x_{1}+\ldots+f_{n} x_{n} .
$$

The hyperplane $H=[f, \alpha]$ separates sets $A, B \subset V$ if

$$
f(x) \geq \alpha \quad \forall x \in A, \quad f(x) \leq \alpha \quad \forall x \in B
$$

(or the same inequalities with A, B, or \geq, \leq, interchanged).
Call a set A in a vector space V convex if

$$
x, y \in A, \quad 0 \leq \lambda \leq 1 \quad \Rightarrow \quad \lambda x+(1-\lambda) y \in A
$$

- that is, A contains the line-segment joining any pair of its points.

We can now state (without proof) the SHT (see e,g, [BK] App. C).
SHT. Any two non-empty disjoint convex sets in a vector space can be separated by a hyperplane.

A cone is a subset of a vector space closed under vector addition and multiplication by positive constants (so: like a vector subspace, but with a sign-restriction in scalar multiplication).

We turn now to the proof of the converse.
Proof of the converse (not examinable). \Rightarrow : Write Γ for the cone of strictly positive random variables. Viability (NA) says that for any admissible strategy H,

$$
\begin{equation*}
V_{0}(H)=0 \quad \Rightarrow \quad \tilde{V}_{N}(H) \notin \Gamma . \tag{*}
\end{equation*}
$$

To any admissible process $\left(H_{n}^{1}, \cdots, H_{n}^{d}\right)$, we associate its discounted cumulative gain process

$$
\tilde{G}_{n}(H):=\Sigma_{1}^{n}\left(H_{j}^{1} \Delta \tilde{S}_{j}^{1}+\cdots+H_{j}^{d} \Delta \tilde{S}_{j}^{d}\right) .
$$

By the Proposition, we can extend $\left(H_{1}, \cdots, H_{d}\right)$ to a unique predictable process $\left(H_{n}^{0}\right)$ such that the strategy $H=\left(\left(H_{n}^{0}, H_{n}^{1}, \cdots, H_{n}^{d}\right)\right)$ is self-financing with initial value zero. By NA, $\tilde{G}_{N}(H)=0-$ that is, $\tilde{G}_{N}(H) \notin \Gamma$.

We now form the set \mathcal{V} of random variables $\tilde{G}_{N}(H)$, with $H=\left(H^{1}, \cdots, H^{d}\right)$ a previsible process. This is a vector subspace of the vector space \mathbb{R}^{Ω} of random variables on Ω, by linearity of the gain process $G(H)$ in H. By $(*)$, this subspace \mathcal{V} does not meet Γ. So \mathcal{V} does not meet the subset

$$
K:=\left\{X \in \Gamma: \Sigma_{\omega} X(\omega)=1\right\} .
$$

Now K is a convex set not meeting the origin. By the Separating Hyperplane Theorem, there is a vector $\lambda=(\lambda(\omega): \omega \in \Omega)$ such that for all $X \in K$

$$
\begin{equation*}
\lambda \cdot X:=\Sigma_{\omega} \lambda(\omega) X(\omega)>0, \tag{1}
\end{equation*}
$$

but for all $\tilde{G}_{N}(H)$ in \mathcal{V},

$$
\begin{equation*}
\lambda . \tilde{G}_{N}(H)=\Sigma_{\omega} \lambda(\omega) \tilde{G}_{N}(H)(\omega)=0 . \tag{2}
\end{equation*}
$$

Choosing each $\omega \in \Omega$ successively and taking X to be 1 on this ω and zero elsewhere, (1) tells us that each $\lambda(\omega)>0$. So

$$
P^{*}(\{\omega\}):=\lambda(\omega) /\left(\Sigma_{\omega^{\prime} \in \Omega} \lambda\left(\omega^{\prime}\right)\right)
$$

defines a probability measure equivalent to P (no non-empty null sets). With E^{*} as P^{*}-expectation, (2) says that

$$
E^{*}\left[\tilde{G}_{N}(H)\right]=0: \quad E^{*}\left[\Sigma_{1}^{N} H_{j} \cdot \Delta \tilde{S}_{j}\right]=0 .
$$

In particular, choosing for each i to hold only stock i,

$$
E^{*}\left[\Sigma_{1}^{N} H_{j}^{i} \Delta \tilde{S}_{j}^{i}\right]=0 \quad(i=1, \cdots, d)
$$

By the Martingale Transform Lemma, this says that the discounted price processes $\left(\tilde{S}_{n}^{i}\right)$ are P^{*}-martingales. //

§3. Complete Markets: Uniqueness of EMMs.

A contingent claim (option, etc.) can be defined by its payoff function, h say, which should be non-negative (options confer rights, not obligations, so negative values are avoided by not exercising the option), and \mathcal{F}_{N}-measurable
(so that we know how to evaluate h at the terminal time N).
Definition. A contingent claim defined by the payoff function h is attainable if there is an admissible strategy worth (i.e., replicating) h at time N. A market is complete if every contingent claim is attainable.

Theorem (Completeness Theorem: complete iff EMM unique). A viable market is complete iff there exists a unique probability measure P^{*} equivalent to P under which discounted asset prices are martingales - that is, iff equivalent martingale measures are unique.

Proof. \Rightarrow : Assume viability and completeness. Then for any \mathcal{F}_{N}-measurable random variable $h \geq 0$, there exists an admissible (so SF) strategy H replicating h : $h=V_{N}(H)$. As H is SF , by $\S 1$

$$
h / S_{N}^{0}=\tilde{V}_{N}(H)=V_{0}(H)+\Sigma_{1}^{N} H_{j} \cdot \Delta \tilde{S}_{j} .
$$

We know by the Theorem of $\S 2$ that an equivalent martingale measure P^{*} exists; we have to prove uniqueness. So, let P_{1}, P_{2} be two such equivalent martingale measures. For $i=1,2,\left(\tilde{V}_{n}(H)\right)_{n=0}^{N}$ is a P_{i}-martingale. So,

$$
E_{i}\left[\tilde{V}_{N}(H)\right]=E_{i}\left[V_{0}(H)\right]=V_{0}(H),
$$

since the value at time zero is non-random $\left(\mathcal{F}_{0}=\{\emptyset, \Omega\}\right)$. So

$$
E_{1}\left[h / S_{N}^{0}\right]=E_{2}\left[h / S_{N}^{0}\right] .
$$

Since h is arbitrary, E_{1}, E_{2} have to agree on integrating all non-negative integrands. Taking negatives and using linearity: they have to agree on nonpositive integrands also. Splitting an arbitrary integrand into its positive and negative parts: they have to agree on all integrands. Now E_{i} is expectation (i.e., integration) with respect to the measure P_{i}, and measures that agree on integrating all integrands must coincide. So $P_{1}=P_{2}$. //

Before proving the converse, we prove a lemma. Recall that an admissible strategy is a SF strategy with all values non-negative. The Lemma shows that the non-negativity of contingent claims extends to all values of any SF strategy replicating it - in other words, this gives equivalence of admissible and SF replicating strategies. [SF: isolated from external wealth; admissible:
actually worth something. These sound similar; the Lemma shows they are the same here. So we only need one term; we use SF as it is shorter, but w.l.o.g. this means admissible also.]

Lemma. In a viable market, any attainable h (i.e., any h that can be replicated by a SF strategy H) can also be replicated by an admissible strategy H.

Proof. If H is SF and P^{*} is an equivalent martingale measure under which discounted prices \tilde{S} are P^{*}-martingales (such P^{*} exist by viability and the Theorem of $\S 2), \tilde{V}_{n}(H)$ is also a P^{*}-martingale, being the martingale transform of \tilde{S} by H (see $\S 1$). So

$$
\tilde{V}_{n}(H)=E^{*}\left[\tilde{V}_{N}(H) \mid \mathcal{F}_{n}\right] \quad(n=0,1, \cdots, N)
$$

If H replicates $h, V_{N}(H)=h \geq 0$, so discounting, $\tilde{V}_{N}(H) \geq 0$, so the above equation gives $\tilde{V}_{n}(H) \geq 0$ for each n. Thus all the values at each time n are non-negative - not just the final value at time N - so H is admissible. //

Proof of the Theorem (continued). \Leftarrow (not examinable): Assume the market is viable but incomplete: then there exists a non-attainable $h \geq 0$. By the Proposition of $\S 1$, we may confine attention to the risky assets S^{1}, \cdots, S^{d}, as these suffice to tell us how to handle the bank account S^{0}.

Call $\tilde{\mathcal{V}}$ the set of random variables of the form

$$
U_{0}+\Sigma_{1}^{N} H_{n} . \Delta \tilde{S}_{n}
$$

with $U_{0} \mathcal{F}_{0}$-measurable (i.e. deterministic) and $\left(\left(H_{n}^{1}, \cdots, H_{n}^{d}\right)\right)_{n=0}^{N}$ predictable; this is a vector space. (Here $\left(H^{1}, \ldots, H^{d}\right)$ extends to $H:=\left(H^{0}, H^{1}, \ldots, H^{d}\right)$, by the Proposition of $\S 1$, and H can be any strategy here.) Then as h is not attainable, the discounted value h / S_{N}^{0} does not belong to $\tilde{\mathcal{V}}$, so $\tilde{\mathcal{V}}$ is a proper subspace of the vector space \mathbb{R}^{Ω} of all random variables on Ω. Let P^{*} be a probability measure equivalent to P under which discounted prices are martingales (such P^{*} exist by viability, by the Theorem of $\S 2$). Define the scalar product

$$
(X, Y) \rightarrow E^{*}[X Y]
$$

on random variables on Ω. Since $\tilde{\mathcal{V}}$ is a proper subspace, by Gram-Schmidt orthogonalisation there exists a non-zero random variable X orthogonal to $\tilde{\mathcal{V}}$. That is,

$$
E^{*}[X]=0
$$

