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Lecture 10 2.11.2015
Kolmogorov’s approach: conditional expectations via σ-fields

The problem with the approach of L9 (discrete and density cases) is that
joint densities need not exist – do not exist, in general. One of the great
contributions of Kolmogorov’s classic book of 1933 was the realization that
measure theory – specifically, the Radon-Nikodym theorem –provides a way
to treat conditioning in general, without assuming that we are in the discrete
case or density case above.

Recall that the probability triple is (Ω,F ,P). Take B a sub-σ-field of F ,
B ⊂ F (recall: a σ-field represents information; the big σ-field F represents
‘knowing everything’, the small σ-field B represents ‘knowing something’).

Suppose that Y is a non-negative random variable whose expectation
exists: E[Y ] < ∞. The set-function

Q(B) :=

∫
B

Y dP (B ∈ B)

is non-negative (because Y is), σ-additive – because∫
B

Y dP =
∑
n

∫
Bn

Y dP

if B = ∪nBn, Bn disjoint – and defined on the σ-algebra B, so is a measure
on B. If P (B) = 0, then Q(B) = 0 also (the integral of anything over a
null set is zero), so Q << P . By the Radon-Nikodym theorem (II.4), there
exists a Radon-Nikodym derivative of Q with respect to P on B, which is
B-measurable [in the Radon-Nikodym theorem as stated in II.4, we had F in
place of B, and got a random variable, i.e. an F -measurable function. Here,
we just replace F by B.] Following Kolmogorov (1933), we call this Radon-
Nikodym derivative the conditional expectation of Y given (or conditional on)
B, E[Y |B]: this is B-measurable, integrable, and satisfies∫

B

Y dP =

∫
B

E[Y |B]dP ∀B ∈ B. (∗)

In the general case, where Y is a random variable whose expectation exists
(E[|Y |] < ∞) but which can take values of both signs, decompose Y as

Y = Y+ − Y−
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and define E(Y |B) by linearity as

E[Y |B] := E[Y+|B]− E[Y−|B].

Suppose now that B is the σ-field generated by a random variable X:
B = σ(X) (so B represents the information contained in X, or what we
know when we know X). Then E[Y |B] = E[Y |σ(X)], which is written more
simply as E[Y |X]. Its defining property is∫

B

Y dP =

∫
B

E[Y |X]dP ∀B ∈ σ(X).

Similarly, if B = σ(X1, · · · , Xn) (B is the information in (X1, · · · , Xn)) we
write E[Y |σ(X1, · · · , Xn] as E[Y |X1, · · · , Xn]:∫

B

Y dP =

∫
B

E[Y |X1, · · · , Xn]dP ∀B ∈ σ(X1, · · · , Xn).

Note. 1. To check that something is a conditional expectation: we have to
check that it integrates the right way over the right sets [i.e., as in (*)].
2. From (*): if two things integrate the same way over all sets B ∈ B, they
have the same conditional expectation given B.
3. For notational convenience, we use E[Y |B] and EBY interchangeably.
4. The conditional expectation thus defined coincides with any we may have
already encountered - in regression or multivariate analysis, for example.
However, this may not be immediately obvious. The conditional expecta-
tion defined above - via σ-fields and the Radon-Nikodym theorem - is rightly
called by Williams ([W], p.84) ‘the central definition of modern probability’.
It may take a little getting used to. As with all important but non-obvious
definitions, it proves its worth in action: see II.6 below for properties of con-
ditional expectations, and Chapter III for stochastic processes, particularly
martingales [defined in terms of conditional expectations].

§6. Properties of Conditional Expectations.

1. B = {∅,Ω}. Here B is the smallest possible σ-field (any σ-field of subsets
of Ω contains ∅ and Ω), and represents ‘knowing nothing’.

E[Y |{∅,Ω}] = EY.
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Proof. We have to check (*) of §5 for B = ∅ and B = Ω. For B = ∅ both
sides are zero; for B = Ω both sides are EY . //

2. B = F . Here B is the largest possible σ-field: ‘knowing everything’.

E[Y |F ] = Y P − a.s.

Proof. We have to check (*) for all sets B ∈ F . The only integrand that
integrates like Y over all sets is Y itself, or a function agreeing with Y except
on a set of measure zero.
Note. When we condition on F (‘knowing everything’), we know Y (because
we know everything). There is thus no uncertainty left in Y to average out,
so taking the conditional expectation (averaging out remaining randomness)
has no effect, and leaves Y unaltered.

3. If Y is B-measurable, E[Y |B] = Y P − a.s.
Proof. Recall that Y is always F -measurable (this is the definition of Y being
a random variable). For B ⊂ F , Y may not be B-measurable, but if it is,
the proof above applies with B in place of F .
Note. If Y is B-measurable, when we are given B (that is, when we condition
on it), we know Y . That makes Y effectively a constant, and when we take
the expectation of a constant, we get the same constant.

4. If Y is B-measurable, E[Y Z|B] = Y E[Z|B] P − a.s.
We refer for the proof of this to [W], p.90, proof of (j).
Note. Williams calls this property ‘taking out what is known’. To remem-
ber it: if Y is B-measurable, then given B we know Y , so Y is effectively a
constant, so can be taken out through the integration signs in (*), which is
what we have to check (with Y Z in place of Y ).

5. If C ⊂ B, E[E[Y |B]|C] = E[Y |C] a.s.
Proof. ECEBY is C-measurable, and for C ∈ C ⊂ B,∫

C

EC[EBY ]dP =

∫
C

EBY dP (definition of EC as C ∈ C)

=

∫
C

Y dP (definition of EB as C ∈ B).

So EC[EBY ] satisfies the defining relation for ECY . Being also C-measurable,
it is ECY (a.s.). //
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5’. If C ⊂ B, E[E[Y |C]|B] = E[Y |C] a.s.
Proof. E[Y |C] is C-measurable, so B-measurable as C ⊂ B, so E[.|B] has no
effect on it, by 3.
Note. 5, 5’ are the two forms of the iterated conditional expectations property.
When conditioning on two σ-fields, one larger (finer), one smaller (coarser),
the coarser rubs out the effect of the finer, either way round. This is also
called the coarse-averaging property, or (Williams [W]) the tower property.

6. Conditional Mean Formula. E[E[Y |B]] = EY P − a.s.
Proof. Take C = {∅,Ω} in 5 and use 1. //
Example. Check this for the bivariate normal distribution considered above.
Note. Compare this with the Conditional Variance Formula of Statistics: see
e.g. SMF, IV.6, Day 9.

7. Role of independence. If Y is independent of B,

E[Y |B] = EY a.s.

Proof. See [W], p.88, 90, property (k).
Note. In the elementary definition P (A|B) := P (A∩B)/P (B) (if P (B) > 0),
if A and B are independent (that is, if P (A ∩ B) = P (A).P (B)), then
P (A|B) = P (A): conditioning on something independent has no effect. One
would expect this familiar and elementary fact to hold in this more general
situation also. It does – and the proof of this rests on the proof above.

Projections. In Property 5 (tower property), take B = C:

E[E[X|C]|C] = E[X|C].

This says that the operation of taking conditional expectation given a sub-σ-
field C is idempotent – doing it twice is the same as doing it once. Also, taking
conditional expectation is a linear operation (it is defined via an integral,
and integration is linear). Recall from Linear Algebra that we have met such
idempotent linear operations before. They are the projections. (Example:
(x, y, z) 7→ (x, y, 0) projects from 3-dimensional space onto the (x, y)-plane.)
This view of conditional expectation as projection is useful and powerful;
see e.g. [BK], [BF] or J. Neveu, Discrete-parameter martingales (North-
Holland, 1975), I.2. It is particularly useful when one has not yet got used
to conditional expectation defined measure-theoretically as above, as it gives
us an alternative (and perhaps more familiar) way to think.
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