SOLUTIONS 7. 5.12.2014

Q1. Vega for calls. With $\phi(x):=e^{-\frac{1}{2} x^{2}} / \sqrt{2 \pi}, \Phi(x):=\int_{-\infty}^{x} \phi(u) d u$ the standard normal density and distribution functions, $\tau:=T-t$ the time to expiry, the Black-Scholes call price is

$$
\begin{gather*}
C_{t}:=S_{t} \Phi\left(d_{1}\right)-K e^{-r(T-t)} \Phi\left(d_{2}\right) \tag{BS}\\
d_{1}:=\frac{\log (S / K)+\left(r+\frac{1}{2} \sigma^{2}\right) \tau}{\sigma \sqrt{\tau}}, \quad d_{2}:=\frac{\log (S / K)+\left(r-\frac{1}{2} \sigma^{2}\right) \tau}{\sigma \sqrt{\tau}}=d_{1}-\sigma \sqrt{\tau}: \\
\phi\left(d_{2}\right)=\phi\left(d_{1}-\sigma \sqrt{\tau}\right)=\frac{e^{-\frac{1}{2}\left(d_{1}-\sigma \sqrt{\tau}\right)^{2}}}{\sqrt{2 \pi}}=\frac{e^{-\frac{1}{2} d_{1}^{2}}}{\sqrt{2 \pi}} \cdot e^{d_{1} \sigma \sqrt{\tau}} \cdot e^{-\frac{1}{2} \sigma^{2} \tau}: \\
\phi\left(d_{2}\right)=\phi\left(d_{1}\right) \cdot e^{d_{1} \sigma \sqrt{\tau}} \cdot e^{-\frac{1}{2} \sigma^{2} \tau}
\end{gather*}
$$

Exponentiating the definition of d_{1},

$$
e^{d_{1} \sigma \sqrt{\tau}}=(S / K) \cdot e^{r \tau} \cdot e^{\frac{1}{2} \sigma^{2} \tau} .
$$

Combining,

$$
\begin{equation*}
\phi\left(d_{2}\right)=\phi\left(d_{1}\right) \cdot(S / K) \cdot e^{r \tau}: \quad K e^{-r \tau} \phi\left(d_{2}\right)=S \phi\left(d_{1}\right) . \tag{*}
\end{equation*}
$$

Differentiating $(B S)$ partially w.r.t. σ gives

$$
v:=\partial C / \partial \sigma=S \phi\left(d_{1}\right) \partial d_{1} / \partial \sigma-K e^{-r \tau} \phi\left(d_{2}\right) \partial d_{2} / \partial \sigma .
$$

So by (*),

$$
\left.v:=\partial C / \partial \sigma=S \phi\left(d_{1}\right) \partial\left(d_{1}-d_{2}\right) / \partial \sigma=S \phi\left(d_{1}\right) \partial \sigma \sqrt{\tau}\right) / \partial \sigma=S \phi\left(d_{1}\right) \sqrt{\tau}>0
$$

Vega for puts.
The same argument gives $v:=\partial P / \partial \sigma>0$, starting with the BlackScholes formula for puts. Equivalently, we can use put-call parity

$$
S+P-C=K e^{-r \tau}: \quad \partial P / \partial \sigma=\partial C / \partial \sigma>0
$$

Interpretation: "Options like volatility": the more uncertainty, i.e. the higher the volatility, the more the "insurance policy" of an option is worth. So vega
is positive for positions long in the option - but negative for short positions.
Q2.(i) Delta for calls.

$$
\begin{aligned}
\Delta & :=\partial C / \partial S=\frac{\partial}{\partial S}\left[S \Phi\left(d_{1}\right)-K e^{-r \tau} \Phi\left(d_{2}\right)\right] \\
& =\Phi\left(d_{1}\right)+S \phi\left(d_{1}\right) \frac{\partial d_{1}}{\partial S}-K e^{-r \tau} \phi\left(d_{2}\right) \frac{\partial d_{2}}{\partial S} \\
& =\Phi\left(d_{1}\right)+S \phi\left(d_{1}\right) \frac{\partial\left(d_{1}-d_{2}\right)}{\partial S}
\end{aligned}
$$

by Q1 (*). Since $d_{1}-d_{2}=\sigma \sqrt{\tau}$ does not depend on S, this gives

$$
\Delta=\Phi\left(d_{1}\right) \in(0,1)
$$

Interpretation: the payoff $(S-K)_{+}$is increasing in S, so the option price should be also - and it is: $\Delta>0$.

Also, $\Delta<1$: options are to insure against adverse price movements. This reflects that options are useful for this: if Δ were ≥ 1, there would be no advantage in using options to hedge - we would just use a combination of cash and stock.
(ii) Delta for puts. Now put-call parity

$$
S+P-C=K e^{-r \tau}
$$

and (i) give

$$
\partial P / \partial S=\partial C / \partial S-1 \in(-1,0)
$$

Interpretation: now the payoff $(K-S)_{+}$is decreasing in S, so the option price should be also - and it is. That $\Delta>-1$ reflects that options are useful for insuring against adverse price movements (as above): if Δ were ≤-1, we would just use a combination of cash and stock.

Q3. Vega for American options. The discounted value of an American option is the Snell envelope $\tilde{U}_{n-1}=\max \left(\tilde{Z}_{n-1}, E^{*}\left[\tilde{U}_{n} \mid \mathcal{F}_{n-1}\right]\right)$ of the discounted payoff \tilde{Z}_{n} (exercised early at time $n<N$), with terminal condition $U_{N}=Z_{N}, \tilde{U}_{N}=\tilde{Z}_{N}$. If the $Z s$ increase, the $U s$ increase (above: backward induction on $n-\mathrm{DP}$, as usual for American options). As volatility σ increases, the $Z \mathrm{~s}$ increase: vega is positive for European options (Q1). So the Us increase also. So vega is also positive for American options. // NHB

