
M3A22 MATHEMATICAL FINANCE: MOCK EXAM
SOLUTIONS 2014-15

Q1. (a) Types of risk. Institutions encounter risks of various types. Per-
haps the biggest one starts at the top: how good is the board? If the board
of directors, and particularly the chairman and CEO, do not have a good
overview and good judgement, this alone can bring the institution down. [2]

Other specific types of risk include:
Market risk. This is the risk that one’s current market position (the aggre-
gate of risky assets one holds) goes down in value (things one is long on get
cheaper, and/or things one is short on get dearer). [3]
Credit risk. This is the risk that counter-parties to one’s financial transac-
tions may default on their obligations. When this happens, debts cannot be
(or are not) paid in full. Usually, payment is made in part, by negotiation
between the parties (it may be cheaper to agree a partial repayment than to
force the other party into bankruptcy), or by the administrators or liquida-
tors in the case of companies. [3]
Operational risk. This is risk arising from the internal procedures of an insti-
tution: failure of computer systems for implementing transactions; fraudulent
or unauthorised trading made possible by inadequate supervision; etc. [3]
Liquidity risk. This is the risk that one will be unable to implement a planned
or agreed transaction because of lack of cash-in-hand to trade with, and/or
willingness to trade. The Credit Crunch of 2007/8 on was caused by banks
realising they had piles of toxic debt on their hands (see below), and so did
not know what their balance sheets were worth; that other banks were sim-
ilarly placed; hence that banks no longer trusted themselves or each other,
and so refused to lend to each other. So the financial system froze up; so the
real economy froze up. [3]
Model risk. To handle real-world phenomena of any complexity, one needs to
model them mathematically. Use of an inappropriate model to set the prices
at which one buys and sells exposes the institution to open-ended losses, to
competitors with better models. [3]
(b) Stress testing. Financial regulators test the adequacy of the performance
of a financial institution by subjecting it to stress testing: seeing how well its
operations would perform under hypothetical but unfavourable market sce-
narios. This tests various aspects: their models, systems (how management
and trading teams would react under pressure), capital reserves, etc. [3]
[Mainly seen – lectures]
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Q2. Martingale transforms. Call a process C = (Cn)
∞
n=1 previsible (or

predictable) if
Cn is Fn−1 −measurable for all n ≥ 1. [2]

Think of a gambling game, or series of speculative investments, in discrete
time. There is no play at time 0; there are plays at times n = 1, 2, · · ·, and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Think of Cn as your
stake on play n (C0 is not defined, as there is no play at time 0). Previsibility
says that you have to decide how much to stake on play n based on the history
before time n (i.e., up to and including play n− 1). Your winnings on game
n are Cn∆Xn = Cn(Xn −Xn−1). Your total (net) winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We define Y = C •X as the martingale transform of X by C:

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

1 is empty). [5]
Interpretation. In mathematical finance, X plays the role of a price process:
discounted asset prices are martingales under the risk-neutral measure. C
plays the role of our trading strategy (saying how much stock we hold at each
time), and the mg transform C • X plays the role of our gains (or losses!)
from trading. [5]

Theorem. If C is bounded and previsible and X is a martingale, C •X is
a martingale null at zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

= 0

as X is a martingale. // [8]

[Seen – lectures]
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Q3. Vega for calls. With ϕ(x) := e−
1
2
x2
/
√
2π, Φ(x) :=

∫ x

−∞ ϕ(u)du the
standard normal density and distribution functions, τ := T − t the time to
expiry, the Black-Scholes call price is

Ct := StΦ(d1)−Ke−r(T−t)Φ(d2), (BS)

d1 :=
log(S/K) + (r + 1

2
σ2)τ

σ
√
τ

, d2 :=
log(S/K) + (r − 1

2
σ2)τ

σ
√
τ

= d1−σ
√
τ :

ϕ(d2) = ϕ(d1 − σ
√
τ) =

e−
1
2
(d1−σ

√
τ)2

√
2π

=
e−

1
2
d21

√
2π

.ed1σ
√
τ .e−

1
2
σ2τ :

ϕ(d2) = ϕ(d1).e
d1σ

√
τ .e−

1
2
σ2τ .

Exponentiating the definition of d1,

ed1σ
√
τ = (S/K).erτ .e

1
2
σ2τ .

Combining,

ϕ(d2) = ϕ(d1).(S/K).erτ : Ke−rτϕ(d2) = Sϕ(d1). (∗)

Differentiating (BS) partially w.r.t. σ gives

v := ∂C/∂σ = Sϕ(d1)∂d1/∂σ −Ke−rτϕ(d2)∂d2/∂σ.

So by (∗),

v := ∂C/∂σ = Sϕ(d1)∂(d1 − d2)/∂σ = Sϕ(d1)∂σ
√
τ)/∂σ = Sϕ(d1)

√
τ > 0.

[12]
Vega for puts.

The same argument gives v := ∂P/∂σ > 0, starting with the Black-
Scholes formula for puts. Equivalently, we can use put-call parity

S + P − C = Ke−rτ : ∂P/∂σ = ∂C/∂σ > 0. [3]

Interpretation: ”Options like volatility”: the more uncertainty, i.e. the higher
the volatility, the more the ”insurance policy” of an option is worth. So
vega is positive for positions long in the option – but negative for short
positions. [2]
American calls. Vega is also positive for American calls. For, the Snell
envelope U of a process Z, which passes from European to American option
prices, is order-preserving: U increases as Z increases. Increase in σ increases
both, so since ‘European vega’ is positive, so is ‘American vega’. [3]
[Seen – lectures]
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Q4. Geometric Brownian Motion (GBM). (a) Consider the Black-Scholes
model, with dynamics given by the stochastic differential equation (SDE)

dBt = rBtdt, dSt = µStdt+ σStdWt. (GBM)

The interpretation here is that Bt is our bank account at time t – money
invested risklessly at rate r, so growing exponentially. The risky stock S has
a similar term, this time with growth-rate µ (which models the systematic
part of the price dynamics), plus a second term which models the risky
part. The uncertainty in the economic and financial climate is represented
by the Brownian motion (BM) W = (Wt); this is coupled to the stock-price
dynamics via the paramater σ, the volatility, which measures how sensitive
this particular risky stock is to changes in the overall economic climate. [6]
(b) Discounting the prices by ert, the discounted asset prices S̃t := e−rtSt

have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt

= −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt.

Thus discounting changes the rate µ on the RHS of (GBM) to µ− r. [6]
(c) Now use Girsanov’s Theorem to change from the real probability measure
P to an equivalent probability measure P ∗ under which the µdt in (GBM)
is rdt. Then under P ∗, the stock-price dynamics become

dS̃t = σS̃tdWt (under P ∗).

Integrating, S̃ on the left is a stochastic integral w.r.t. Brownian motion –
which is a martingale. This P ∗ is the equivalent martingale measure (EMM),
or risk-neutral measure. The EMM is that in the continuous-time version of
the Fundamental Theorem of Asset Pricing: to price assets, take expectations
of discounted prices under the risk-neutral measure. This leads to the Black-
Scholes formula by direct probabilistic means, rather than via the Black-
Scholes PDE. [6]
(d) In the Black-Scholes model, markets are complete. So the EMM is unique.
This is a result of the representation theorem for Brownian martingales: any
Brownian martingale can be represented as a stochastic integral w.r.t. BM.
Completeness results from the continuity of the paths of BM. [2]
[Mainly seen – lectures]
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