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Lp spaces.
For p ≥ 1, the Lp spaces Lp(Rk) on Rk are the spaces of measurable

functions f with Lp-norm

∥f∥p :=
(∫

|f |p
) 1

p

< ∞.

Riemann integrals.
Our first exposure to integration is the ‘Sixth-Form integral’, taught non-

rigorously at school. Mathematics undergraduates are taught a rigorous in-
tegral (in their first or second years), the Riemann integral [G.B. RIEMANN
(1826-1866)] – essentially this is just a rigourization of the school integral.
It is much easier to set up than the Lebesgue integral, but much harder to
manipulate.

For finite intervals [a, b] ,we quote:
(i) for any function f Riemann-integrable on [a, b], it is Lebesgue-integrable
to the same value (but many more functions are Lebesgue integrable),
(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the
question, “Which functions are Riemann-integrable?” cannot be answered
without the language of measure theory – which then gives one the techni-
cally superior Lebesgue integral anyway.
Note. Integration is like summation (which is why Leibniz gave us the in-
tegral sign

∫
, as an elongated S). Lebesgue was a very practical man – his

father was a tradesman – and used to think about integration in the follow-
ing way. Think of a shopkeeper totalling up his day’s takings. The Riemann
integral is like adding up the takings – notes and coins – in the order in
which they arrived. By contrast, the Lebesgue integral is like totalling up
the takings in order of size - from the smallest coins up to the largest notes.
This is obviously better! In mathematical effect, it exchanges ‘integrating by
x-values’ (abscissae) with ‘integrating by y-values (ordinates).

Lebesgue-Stieltjes integral.
Suppose that F (x) is a non-decreasing function on R:

F (x) ≤ F (x) if x ≤ y
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(prime example: F a probability distribution function). Such functions can
have at most countably many discontinuities, which are at worst jumps. We
may without loss re-define F at jumps so as to be right-continuous.

We now generalise the starting points above:
(i) Measure. We take µ((a, b]) := F (b)− F (a).

(ii) Integral. We take
∫ b

a
1 := F (b)− F (a).

We may now follow through the successive extension procedures used above.
We obtain:
(i) Lebesgue-Stieltjes measure µ, or µF ,
(ii) Lebesgue-Stieltjes integral

∫
f dµ, or

∫
f dµF , or even

∫
f dF .

Similarly in higher dimensions; we omit further details.
Finite variation.

If instead of being monotone non-decreasing, F is the difference of two
such functions, F = F1 −F2, we can define the integrals

∫
f dF1,

∫
f dF2 as

above, and then define∫
f dF =

∫
f d(F1 − F2) :=

∫
f dF1 −

∫
f dF2.

If [a, b] is a finite interval and F is defined on [a, b], a finite collection of
points, x0, x1, . . . , xn with a = x0 < x1 < · · · < xn = b, is called a partition of
[a, b], P say. The sum

∑n
i=1 |F (xi −F(xi−1)| is called the variation of F over

the partition. The least upper bound of this over all partitions P is called
the variation of F over the interval [a, b], V b

a (F ):

V b
a (F ) := sup

P

∑
|F (xi)− F (xi−1)|.

This may be +∞; but if V b
a (F ) < ∞, F is said to be of finite variation

on [a, b], F ∈ FV b
a (bounded variation, BV, is also used). If F is of finite

variation on all finite intervals, F is said to be locally of finite variation,
F ∈ FVloc; if F is of finite variation on the real line, F is of finite variation,
F ∈ FV .

We quote (Jordan’s theorem) that the following are equivalent:
(i) F is locally of finite variation,
(ii) F can be written as the difference F = F1 − F2 of two monotone func-
tions.
So the above procedure defines the integral

∫
f dF when the integrator F is

of finite variation.
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3 Probability.
Probability spaces.

The mathematical theory of probability can be traced to 1654, to corre-
spondence between PASCAL (1623-1662) and FERMAT (1601-1665). How-
ever, the theory remained both incomplete and non-rigorous till the 20th
century. It turns out that the Lebesgue theory of measure and integral
sketched above is exactly the machinery needed to construct a rigorous the-
ory of probability adequate for modelling reality (option pricing, etc.) for
us. This was realised by the great Russian mathematician and probabilist
A.N.KOLMOGOROV (1903-1987), whose classic book of 1933, Grundbegriffe
der Wahrscheinlichkeitsrechnung [Foundations of probability theory] inaugu-
rated the modern era in probability.

Recall from your first course on probability that, to describe a random
experiment mathematically, we begin with the sample space Ω, the set of all
possible outcomes. Each point ω of Ω, or sample point, represents a possible
– random – outcome of performing the random experiment. For a set A ⊆ Ω
of points ω we want to know the probability P (A) (or Pr(A), pr(A)). We
clearly want
1. P (∅) = 0, P (Ω) = 1,
2. P (A) ≥ 0 for all A,
3. If A1, A2, . . . , An are disjoint, P (

∪n
i=1 Ai) =

∑n
i=1 P (Ai) (finite additiv-

ity), which, as above we will strengthen to
3*. If A1, A2 . . . (ad inf.) are disjoint,

P (
∞∪
i=1

Ai) =
∞∑
i=1

P (Ai) (countable additivity).

4. If B ⊆ A and P (A) = 0, then P (B) = 0 (completeness).
Then by 1 and 3 (with A = A1, Ω \ A = A2),

P (Ac) = P (Ω \ A) = 1− P (A).

So the class F of subsets of Ω whose probabilities P (A) are defined should
be closed under countable, disjoint unions and complements, and contain the
empty set ∅ and the whole space Ω. Such a class is called a σ-field of subsets
of Ω [or sometimes a σ-algebra, which one would write A]. For each A ∈ F ,
P (A) should be defined (and satisfy 1, 2, 3∗, 4 above). So, P : F → [0, 1] is a
set-function,

P : A 7→ P (A) ∈ [0, 1] (A ∈ F).
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The sets A ∈ F are called events. Finally, 4 says that all subsets of null-sets
(events) with probability zero (we will call the empty set ∅ empty, not null)
should be null-sets (completeness). A probability space, or Kolmogorov triple,
is a triple (Ω,F , P ) satisfying these Kolmogorov axioms 1,2,3*,4 above. A
probability space is a mathematical model of a random experiment.
Random variables.

Next, recall random variables X from your first probability course. Given
a random outcome ω, you can calculate the value X(ω) of X (a scalar – a
real number, say; similarly for vector-valued random variables, or random
vectors). So, X is a function from Ω to R, X → R,

X : ω → X(ω) (ω ∈ Ω).

Recall also that the distribution function of X is defined by

F (x), or FX(x), := P
(
{ω : X(ω) ≤ x}

)
, or P (X ≤ x), (x ∈ R).

We can only deal with functions X for which all these probabilities are de-
fined. So, for each x, we need {ω : X(ω) ≤ x} ∈ F . We summarize this by
saying that X is measurable with respect to the σ-field F (of events), briefly,
X is F -measurable. Then, X is called a random variable [non-F -measurable
X cannot be handled, and so are left out]. So,
(i) a random variable X is an F -measurable function on Ω,
(ii) a function on Ω is a random variable (is measurable) iff its distribution
function is defined.
Generated σ-fields.

The smallest σ-field containing all the sets {ω : X(ω) ≤ x} for all real x
[equivalently, {X < x}, {X ≥ x}, {X > X}] is called the σ-field generated
by X, written σ(X). Thus,

X is F -measurable [is a random variable] iff σ(X) ⊆ F .

When the (random) value X(ω) is known, we know which of the events in the
σ-field generated by X have happened: these are the events {ω : X(ω) ∈ B},
where B runs through the Borel σ-field [the σ-field generated by the inter-
vals] on the line.
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