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L, spaces.
For p > 1, the L, spaces L,(R¥) on R¥ are the spaces of measurable
functions f with L,-norm

1
Il = (f157) < o
Riemann integrals.

Our first exposure to integration is the ‘Sixth-Form integral’, taught non-
rigorously at school. Mathematics undergraduates are taught a rigorous in-
tegral (in their first or second years), the Riemann integral [G.B. RIEMANN
(1826-1866)] — essentially this is just a rigourization of the school integral.
It is much easier to set up than the Lebesgue integral, but much harder to
manipulate.

For finite intervals [a, b] ,we quote:

(i) for any function f Riemann-integrable on [a,b], it is Lebesgue-integrable
to the same value (but many more functions are Lebesgue integrable),

(ii) f is Riemann-integrable on [a, b] iff it is continuous a.e. on [a, b]. Thus the
question, “Which functions are Riemann-integrable?” cannot be answered
without the language of measure theory — which then gives one the techni-
cally superior Lebesgue integral anyway.

Note. Integration is like summation (which is why Leibniz gave us the in-
tegral sign [, as an elongated S). Lebesgue was a very practical man — his
father was a tradesman — and used to think about integration in the follow-
ing way. Think of a shopkeeper totalling up his day’s takings. The Riemann
integral is like adding up the takings — notes and coins — wn the order in
which they arrived. By contrast, the Lebesgue integral is like totalling up
the takings in order of size - from the smallest coins up to the largest notes.
This is obviously better! In mathematical effect, it exchanges ‘integrating by
x-values’ (abscissae) with ‘integrating by y-values (ordinates).

Lebesgue-Stieltjes integral.
Suppose that F(z) is a non-decreasing function on R:

F(z) < F(x) if x <y



(prime example: F' a probability distribution function). Such functions can
have at most countably many discontinuities, which are at worst jumps. We
may without loss re-define F' at jumps so as to be right-continuous.

We now generalise the starting points above:
(i) Measure. We take pu((a, b)) := F(b) — F(a).
(ii) Integral. We take fab 1:=F(b) — F(a).
We may now follow through the successive extension procedures used above.
We obtain:
(1) Lebesgue-Stieltjes measure p, or pip,
(ii) Lebesgue-Stieltjes integral [ f du, or [ f dup, or even [ f dF.
Similarly in higher dimensions; we omit further details.
Finite variation.

If instead of being monotone non-decreasing, F' is the difference of two
such functions, F' = F| — Fy, we can define the integrals f f dFy, f f dFy as
above, and then define

/de:/fd(Fl—Fz)::/del—/deQ.

If [a,b] is a finite interval and F is defined on [a,b], a finite collection of
points, xg, x1,...,x, Witha =29 < 21 < --- < x, = b, is called a partition of
la, ], P say. The sum >, |F(x; — Fw;—1)| is called the variation of F over
the partition. The least upper bound of this over all partitions P is called
the variation of F over the interval [a, b], V2(F):

VIF) = s%pz |F(x;) — F(x;i_1)|-

This may be +oo; but if V2(F) < oo, F is said to be of finite variation
on [a,b], F € FV? (bounded variation, BV, is also used). If F is of finite
variation on all finite intervals, F' is said to be locally of finite variation,
F € FV,.; if F is of finite variation on the real line, F' is of finite variation,
FeFV.

We quote (Jordan’s theorem) that the following are equivalent:
(i) F is locally of finite variation,
(ii) ' can be written as the difference F' = Fy — F5 of two monotone func-
tions.
So the above procedure defines the integral [ f dF when the integrator F' is
of finite variation.



3 Probability.
Probability spaces.

The mathematical theory of probability can be traced to 1654, to corre-
spondence between PASCAL (1623-1662) and FERMAT (1601-1665). How-
ever, the theory remained both incomplete and non-rigorous till the 20th
century. It turns out that the Lebesgue theory of measure and integral
sketched above is exactly the machinery needed to construct a rigorous the-
ory of probability adequate for modelling reality (option pricing, etc.) for
us. This was realised by the great Russian mathematician and probabilist
AN.KOLMOGOROV (1903-1987), whose classic book of 1933, Grundbegriffe
der Wahrscheinlichkeitsrechnung [Foundations of probability theory] inaugu-
rated the modern era in probability.

Recall from your first course on probability that, to describe a random
experiment mathematically, we begin with the sample space €2, the set of all
possible outcomes. Each point w of €, or sample point, represents a possible
— random — outcome of performing the random experiment. For a set A C ()
of points w we want to know the probability P(A) (or Pr(A),pr(A)). We
clearly want
1. P(0) =0, P(Q2) =1,

2. P(A) >0 for all A,

3. If Ay, As, ..., A, are disjoint, P(J_, A;) = > 1", P(A;) (finite additiv-
ity), which, as above we will strengthen to

3. If Ay, As... (ad inf.) are disjoint,

P(U A;) = Z P(4;) (countable additivity).
i=1 i=1

4. If B C A and P(A) =0, then P(B) = 0 (completeness).
Then by 1 and 3 (Wlth A= Al, Q \ A= Ag),

P(A°) = P(Q\ A) = 1 — P(A).

So the class F of subsets of 2 whose probabilities P(A) are defined should
be closed under countable, disjoint unions and complements, and contain the
empty set () and the whole space Q. Such a class is called a o-field of subsets
of Q [or sometimes a o-algebra, which one would write A]. For each A € F,
P(A) should be defined (and satisfy 1,2, 3,4 above). So, P : F — [0, 1] is a
set-function,

P:Am P(A) €0,1] (AeF).
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The sets A € F are called events. Finally, 4 says that all subsets of null-sets
(events) with probability zero (we will call the empty set () empty, not null)
should be null-sets (completeness). A probability space, or Kolmogorov triple,
is a triple (Q, F, P) satisfying these Kolmogorov azioms 1,2,3% .4 above. A
probability space is a mathematical model of a random experiment.
Random variables.

Next, recall random variables X from your first probability course. Given
a random outcome w, you can calculate the value X (w) of X (a scalar — a
real number, say; similarly for vector-valued random variables, or random
vectors). So, X is a function from Q to R, X — R,

X:iw—Xw) (we).
Recall also that the distribution function of X is defined by
F(z), or Fx(x), := P({w X (w) < :z:}), or P(X <ux), (x € R).

We can only deal with functions X for which all these probabilities are de-
fined. So, for each z, we need {w: X(w) <z} € F. We summarize this by
saying that X is measurable with respect to the o-field F (of events), briefly,
X is F-measurable. Then, X is called a random variable [non-F-measurable
X cannot be handled, and so are left out]. So,
(i) a random variable X is an F-measurable function on 2,
(i) a function on Q is a random variable (is measurable) iff its distribution
function is defined.
Generated o-fields.

The smallest o-field containing all the sets {w : X (w) < x} for all real =
lequivalently, {X < z}, {X >z}, {X > X1}] is called the o-field generated
by X, written o(X). Thus,

X is F-measurable [is a random variable] iff o(X) C F.

When the (random) value X (w) is known, we know which of the events in the
o-field generated by X have happened: these are the events {w : X (w) € B},
where B runs through the Borel o-field [the o-field generated by the inter-
vals] on the line.



