m3a22l7.tex
Lecture 7. 27.10.2014

Chapter II. PROBABILITY BACKGROUND.

1. Measure

The language of option pricing involves that of probability, which in turn involves that of measure theory. This originated with Henri LEBESGUE (1875-1941), in his 1902 thesis, 'Intégrale, longueur, aire'. We begin with the simplest case.
Length. The length $\mu(I)$ of an interval $I=(a, b),[a, b],[a, b)$ or $(a, b]$ should be $b-a: \mu(I)=b-a$. The length of the disjoint union $I=\bigcup_{r=1}^{n} I_{r}$ of intervals I_{r} should be the sum of their lengths:

$$
\mu\left(\bigcup_{r=1}^{n} I_{r}\right)=\sum_{r=1}^{n} \mu\left(I_{r}\right) \quad \text { (finite additivity). }
$$

Consider now an infinite sequence I_{1}, I_{2}, \ldots (ad infinitum) of disjoint intervals. Letting $n \rightarrow \infty$ suggests that length should again be additive over disjoint intervals:

$$
\mu\left(\bigcup_{r=1}^{\infty} I_{r}\right)=\sum_{r=1}^{\infty} \mu\left(I_{r}\right) \quad \text { (countable additivity). }
$$

For I an interval, A a subset of length $\mu(A)$, the length of the complement $I \backslash A:=I \cap A^{c}$ of A in I should be

$$
\mu(I \backslash A)=\mu(I)-\mu(A) \quad \text { (complementation) }
$$

If $A \subseteq B$ and B has length $\mu(B)=0$, then A should have length 0 also:

$$
A \subseteq B \& \mu(B)=0 \Rightarrow \mu(A)=0 \quad \text { (completeness). }
$$

Let \mathcal{F} be the smallest class of sets $A \subset \mathbb{R}$ containing the intervals, closed under countable disjoint unions and complements, and complete (containing all subsets of sets of length 0 as sets of length 0). The above suggests - what Lebesgue showed - that length can be sensibly defined on the sets \mathcal{F} on the line, but on no others. There are others - but they are hard to construct (in technical language: the Axiom of Choice, or some variant of it such as Zorn's

Lemma, is needed to demonstrate the existence of non-measurable sets - but all such proofs are highly non-constructive). So: some but not all subsets of the line have a length. These are called the Lebesgue-measurable sets, and form the class \mathcal{F} described above; length, defined on \mathcal{F} is called Lebesgue measure μ (on the real line, \mathbb{R}).
Area. The area of a rectangle $R=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)-$ with or without any of its perimeter included - should be $\mu(R)=\left(b_{1}-a_{1}\right) \times\left(b_{2}-a_{2}\right)$. The area of a finite or countably infinite union of disjoint rectangles should be the sum of their areas:

$$
\mu\left(\bigcup_{n=1}^{\infty} R_{n}\right)=\sum_{n=1}^{\infty} \mu\left(R_{n}\right) \quad \text { (countable additivity). }
$$

If R is a rectangle and $A \subseteq R$ with area $\mu(A)$, the area of the complement $R \backslash A$ should be

$$
\mu(R \backslash A)=\mu(R)-\mu(A) \quad \text { (complementation) }
$$

If $B \subseteq A$ and A has area $0, B$ should have area 0 :

$$
A \subseteq B \& \mu(B)=0 \Rightarrow \mu(A)=0 \quad \text { (completeness) }
$$

Let \mathcal{F} be the smallest class of sets, containing the rectangles, closed under finite or countably infinite unions, closed under complements, and complete (containing all subsets of sets of area 0 as sets of area 0). Lebesgue showed that area can be sensibly defined on the sets in \mathcal{F} and no others. The sets $A \in \mathcal{F}$ are called the Lebesgue-measurable sets in the plane \mathbb{R}^{2}; area, defined on \mathcal{F}, is called Lebesgue measure in the plane. So: some but not all sets in the plane have an area.
Volume. Similarly in three-dimensional space \mathbb{R}^{3}, starting with the volume of a cuboid $C=\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right) \times\left(a_{3}, b_{3}\right)$ as

$$
\mu(C)=\left(b_{1}-a_{1}\right) \cdot\left(b_{2}-a_{2}\right) \cdot\left(b_{3}-a_{3}\right) .
$$

Euclidean space. Similarly in k-dimensional Euclidean space \mathbb{R}^{k}. We start with

$$
\mu\left(\prod_{i=1}^{k}\left(a_{i}, b_{i}\right)=\prod_{i=1}^{k}\left(b_{i}-a_{i}\right)\right.
$$

and obtain the class \mathcal{F} of Lebesgue-measurable sets in \mathbb{R}^{k}, and Lebesgue measure μ in \mathbb{R}^{k}.

Probability.

The unit cube $[0,1]^{k}$ in \mathbb{R}^{k} has Lebesgue measure 1 . It can be used to model the uniform distribution (density $f(x)=1$ if $\mathbf{x} \in[0,1]^{k}, 0$ otherwise), with probability $=$ length/area/volume if $k=1 / 2 / 3$.
Note. If a property holds everywhere except on a set of measure zero, we say it holds almost everywhere (a.e.) [French: presque partout, p.p.; German: fast überall, f.u.]. If it holds everywhere except on a set of probability zero, we say it holds almost surely (a.s.) [or, with probability one].

2 Integral.

1. Indicators. We start in dimension $k=1$ for simplicity, and consider the simplest calculus formula $\int_{a}^{b} 1 d x=b-a$. We rewrite this as

$$
I(f):=\int_{-\infty}^{\infty} f(x) d x=b-a \quad \text { if } f(x)=I_{[a, b)}(x),
$$

the indicator function of $[a, b]$ (1 in $[a, b], 0$ outside it), and similarly for the other three choices about end-points.
2. Simple functions. A function f is called simple if it is a finite linear combination of indicators: $f=\sum_{i=1}^{n} c_{i} f_{i}$ for constants c_{i} and indicator functions f_{i} of intervals I_{i}. One then extends the definition of the integral from indicator functions to simple functions by linearity:

$$
I\left(\sum_{i=1}^{n} c_{i} f_{i}\right):=\sum_{i=1}^{n} c_{i} I\left(f_{i}\right)
$$

for constants c_{i} and indicators f_{i} of intervals I_{i}.
3. Non-negative measurable functions. Call f a (Lebesgue-) measurable function if, for all c, the sets $\{x: f(x) \leq c\}$ is a Lebesgue-measurable set (§1). If f is a non-negative measurable function, we quote that it is possible to construct f as the increasing limit of a sequence of simple functions f_{n} :

$$
f_{n}(x) \uparrow f(x) \quad \text { for all } x \in \mathbb{R} \quad(n \rightarrow \infty), \quad f_{n} \text { simple. }
$$

We then define the integral of f as

$$
I(f):=\lim _{n \rightarrow \infty} I\left(f_{n}\right)(\leq \infty)
$$

(we quote that this does indeed define $I(f)$: the value does not depend on which approximating sequence (f_{n}) we use). Since f_{n} increases in n, so does
$I\left(f_{n}\right)$ (the integral is order-preserving), so either $I\left(f_{n}\right)$ increases to a finite limit, or diverges to ∞. In the first case, we say f is (Lebesgue-) integrable with (Lebesgue-) integral $I(f)=\lim I\left(f_{n}\right)$, or $\int f(x) d x=\lim \int f_{n}(x) d x$, or simply $\int f=\lim \int f_{n}$.
4. Measurable functions. If f is a measurable function that may change sign, we split it into its positive and negative parts, $f_{ \pm}$:

$$
\begin{array}{ll}
f_{+}(x):=\max (f(x), 0), & f_{-}(x):=-\min (f(x), 0), \\
f(x)=f_{+}(x)-f_{-}(x), & |f(x)|=f_{+}(x)+f_{-}(x)
\end{array}
$$

If both f_{+}and f_{-}are integrable, we say that f is too, and define

$$
\int f:=\int f_{+}-\int f_{-} .
$$

Then, in particular, $|f|$ is also integrable, and

$$
\int|f|=\int f_{+}+\int f_{-} .
$$

Note. The Lebesgue integral is, by construction, an absolute integral: f is integrable iff $|f|$ is integrable. Thus, for instance, the well-known formula

$$
\int_{0}^{\infty} \frac{\sin x}{x} d x=\frac{\pi}{2}
$$

has no meaning for Lebesgue integrals, since $\int_{1}^{\infty} \frac{|\sin x|}{x} d x$ diverges to $+\infty$ like $\int_{1}^{\infty} \frac{1}{x} d x$. It has to be replaced by the limit relation

$$
\int_{0}^{X} \frac{\sin x}{x} d x \rightarrow \frac{\pi}{2} \quad(X \rightarrow \infty)
$$

The class of (Lebesgue-) integrable functions f on \mathbb{R} is written $L(\mathbb{R})$ or (for reasons explained below) $L_{1}(\mathbb{R})$ - abbreviated to L_{1} or L.
Higher dimensions. In \mathbb{R}^{k}, we start instead from k-dimensional boxes. If f is the indicator of a box $B=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times \cdots \times\left[a_{k}, b_{k}\right], \int f:=\prod_{i=1}^{k}\left(b_{i}-a_{i}\right)$. We then extend to simple functions by linearity, to non-negative measurable functions by taking increasing limits, and to measurable functions by splitting into positive and negative parts.

