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To summarise the basic case (1 and o constant) in a nutshell:
(i). Dynamics are given by GBM, dS; = pSdt + o SdW,.
(i1). Discount: dS; = (u — 7)Sdt + o SdW;.
(iii). Use Girsanov’s Theorem to change p to r: under P*, dS, = 0. SdW;.
(iv). Integrate: the RHS gives a P*-martingale, so has constant E*-expectation.
Comments.
1. Calculation. When solutions have to be found numerically (as is the case
in general - though not for some important special cases such as European
call options, considered below), we again have a choice of
(i) analytic methods: numerical solution of a PDE,
(ii) probabilistic methods: evaluation, by the Risk-Neutral Valuation For-
mula, of an expectation.
A comparison of convenience between these two methods depends on one’s
experience of numerical computation and the software available. However, in
the simplest case considered here, the probabilistic problem involves a one-
dimensional integral, while the analytic problem is two-dimensional (involves
a two-variable PDE: one variable would give an ODE!). So on dimensional
grounds, and because of the probabilistic content of this course, we will gen-
erally prefer the probabilistic approach.
2. The Feynman-Kac formula. It is interesting to note that the Feynman-
Kac formula originates in an entirely different context, namely quantum
physics. In the late 1940s, the physicist Richard Feynman developed his
path-integral approach to quantum mechanics, leading to his work (with
Schwinger, Tomonaga and Dyson) on QED (quantum electrodynamics). Feyn-
man’s approach was non-rigorous; Mark Kac, an analyst and probabilist with
an excellent background in PDE, produced a rigorous version which led to
the approach above.
3. The Sharpe ratio. There is no point in investing in a risky asset with
mean return rate p, when cash is a riskless asset with return rate r, unless
@ > r. The excess return p — r is compared with the risk, as measured by
the volatility o via the Sharpe ratio

Ai=(p—r)/o,

also known as the market price of risk.
4. The Greeks and delta-hedging. This is much as in discrete time (Ch. 1V).
5. Discrete and continuous time. One often has a choice between discrete



and continuous time. For discrete time, we have proved everything; for con-
tinuous time, we have had to quote the hard proofs. Note that in continuous
time we can use calculus — PDEs, SDEs etc. In discrete time we use instead
the calculus of finite differences.
6. The calculus of finite differences. This is very similar to ordinary calculus
(old-fashioned name: the infinitesimal calculus — thus the opposite of finite
here is infinitesimal, not infinite!). It is in some ways harder. For instance:
you all know integration by parts (partial integration) backwards. The dis-
crete analogue — partial summation, or Abel’s lemma — may be less familiar.
The calculus of finite differences used to be taught for use in e.g. inter-
polation (how to use information in mathematical tables to ‘fill in missing
values’). This is now done by computer subroutines — but, computers work
discretely (with differences rather than derivatives), so the subject is still
alive and well.

85. Further results
1. American Calls.

As in discrete time, these are equivalent to European calls - there is no
advantage in early exercise
2. American Puts.

The results on Snell envelopes, least supermartingale majorants etc. ex-
tend to continuous time.

Pricing American calls is an optimal stopping problem: one wants to
choose the exercise time so as to maximise the payoff. There is a whole
subject on optimal stopping; see e.g. the book by Peskir & Shiryaev, [PS].
There are links with real (investment) options (below).

3. Exotic options.

The options considered so far (put/call, European/American) are so stan-
dard now as to be commonly called vanilla options. More complicated types
of option are called exotic options. These include:

Barrier options, where the payoff depends on whether some barrier has been
crossed (‘up and in, up and out, down and in, down and out’);

Lookback options, where one can retrospectively ‘buy at the low, sell at the
high’.

The mathematics here is very interesting, but we cannot develop it here.

4. Jumps in stock price.

We mentioned the jitter in stock prices: these jump, when looked at
closely enough. Also, big trades move prices, and so do economic shocks.



The Black-Scholes model based on BM, which is continuous, cannot handle
this. More general processes (Lévy processes — stationary independent in-
crements) are needed here. But these model incomplete markets — so prices
are no longer unique (one has a bid-ask spread). We stress: real markets
are incomplete. Real prices jump. The completeness of the Black-Scholes
model, and the Brownian Martingale Representation Theorem, reflects the
continuity of BM.

5. Varying or random interest rates. This is the subject of ongoing research.
6. Transaction costs.

Real markets suffer from friction: there are actual costs in trading and
making transactions, which complicate the theory.
7. Higher interest rates for borrowing than lending.

Real financial markets have higher interest rates for borrowing than for
lending (which is how banking works), and this introduces another kind of
friction into the market. Again: ongoing research.

8. Stochastic volatility (SV).

There are a number of stylised facts in mathematical finance. E.g.:

(i). Financial data show skewness. This is a result of the asymmetry between
profit and loss (large losses are lethall; large profits are just nice to have).
(ii). Financial data have much fatter tails than the normal (Gaussian). We
have discussed this in I.5.

(iii) Financial data show volatility clustering. This is a result of the economic
and financial environment, which is extremely complex, and which moves
between good times/booms/upswings and bad times/slumps/downswings.
Typically, the market ‘gets stuck’, staying in its current state for longer than
is objectively justified, and then over-correcting.

9. ARCH and GARCH.

These are econometric (time series) models widely used for modelling
stochastic volatility and volatility clustering.
10. Real options (Investment options)

These are concerned, not with financial derivatives, but with business
decision-making — typically, the decision of whether or not to make a par-
ticular investment, and if so, when. Because these options concern the real
economy (of manufacturing, etc.) rather than financial markets such as the
stock market, such options are often called real options. But because they
typically concern investment decisions, they are also often called investment
options. There is a good introductory treatment in [D&P].



Postscript.

1. One recent book on Financial Mathematics describes the subject as being
composed of three strands:

arbitrage — the core economic concept, which we have used throughout;
martingales — the key probabilistic concept (Ch. III on);

numerics. Finance houses in the City use models, which they need to cali-
brate to data — a task involving both statistical and numerical skills, and in
particular an ability to programme.

2. You will probably already have experience with at least one general math-
ematics package (e.g., Mathematica and/or Maple) (if not: get it, a.s.a.p.!).
You may also know some Numerical Analysis, the theory behind computa-
tion. You may have encountered simulation, also known as Monte Carlo,
and/or a branch of Probability and Statistics called Markov Chain Monte
Carlo (MCMC) — computer-intensive methods for numerical solutions to
problems too complicated to solve analytically. The leaders of R & D teams
in the City need to be expert at both stochastic modelling (e.g., to propose
new products), and simulation (to evaluate how these perform). Most of
the ones I know use Matlab for this. At a lower level, quantitative analysts
(quants) working under them need expertise in a computer language; C++
is the industry standard. If you are thinking of a career in Mathematical
Finance, learn C++, as soon as possible, and for academic credit.

3. This course deals with equity markets — with stocks, and financial deriva-
tives of them — options on stocks, etc. The relevant mathematics is finite-
dimensional. Lurking in the background are bond markets (‘money markets’:
bonds, gilts etc., where interest rates dominate), and the relevant options —
interest-rate derivatives, and foreign exchange between different currencies
(‘forex’). The resulting mathematics (which is highly topical, and so in great
demand in the City!) is infinite-dimensional, and so much harder than the
equity-market theory we have done. However, the underlying principles are
basically the same. One has to learn to walk before one learns to run, and
equity markets serve as a preparation for money markets.

4. The aim of this lecture course is simple. It is to familiarize the student
with the basics of Black-Scholes theory, as the core of modern finance, and
with the mathematics necessary to understand this. The motivation driving
the ever-increasing study of this material is the financial services industry
and the City. I hope that any of you who seek City careers will find this
introduction to the subject useful in later life. NHB, 2014



