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This gives the following result:

Theorem (Risk-Neutral Valuation Formula). The no-arbitrage price
of the claim h(ST ) is given by

F (t, x) = e−r(T−t)E∗
t,xh(ST ),

where St = x is the asset price at time t and P ∗ is the measure under which
the asset price dynamics are given by

dSt = rStdt+ σ(t, St)StdWt.

Corollary. In the Black-Scholes model above, the arbitrage-free price does
not depend on the mean return rate µ of the underlying asset.

Comments.
1. Risk-neutral measure. We call P ∗ the risk-neutral probability measure. It
is equivalent to P (by Girsanov’s Theorem – the change-of-measure result,
which deals with change of drift in SDEs – see §4), and is a martingale mea-
sure (as the discounted asset prices are P ∗-martingales, by above), i.e. P ∗

(or Q) is the equivalent martingale measure (EMM).
2. Fundamental Theorem of Asset Pricing. The above continuous-time re-
sult may be summarised just as the Fundamental Theorem of Asset Pricing
in discrete time: to get the no-arbitrage price of a contingent claim, take the
discounted expected value under the equivalent mg (risk-neutral) measure.
3. Completeness. In discrete time, we saw that absence of arbitrage corre-
sponded to existence of risk-neutral measures, completeness to uniqueness.
We have obtained existence and uniqueness here (and so completeness), by
appealing to existence and uniqueness theorems for PDEs (which we have
not proved!). A more probabilistic route is to use Girsanov’s Theorem (§4)
instead. Completeness questions then become questions on representation
theorems for Brownian martingales (§4). As usual, there is a choice of routes
to the major results – in this case, a trade-off between analysis (PDEs) and
probability (Girsanov’s Theorem and the Representation Theorem for Brow-
nian Martingales, §4).

Now the process specified under P ∗ by the dynamics (∗∗) is our old friend
geometric Brownian motion, GBM(r, σ). Thus if St has P

∗-dynamics

dSt = rStdt+ σStdWt, St = s,
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with W a P ∗-Brownian motion, then we can write ST explicitly as

ST = s exp{(r − 1

2
σ2)(T − t) + σ(WT −Wt)}.

Now WT −Wt is normal N(0, T − t), so (WT −Wt)/
√
T − t =: Z ∼ N(0, 1):

ST = s exp{(r − 1

2
σ2)(T − t) + σZ

√
T − t}, Z ∼ N(0, 1).

So by the Risk-Neutral Valuation Formula, the pricing formula is

F (t, x) = e−r(T−t)

∫ ∞

−∞
h(s exp{(r − 1

2
σ2)(T − t) + σ(T − t)

1
2x}).e

− 1
2
x2

√
2π

dx.

For a general payoff function h, there is no explicit formula for the integral,
which has to be evaluated numerically. But we can evaluate the integral for
the basic case of a European call option with strike-price K:

h(s) = (s−K)+.

Then

F (t, x) = e−r(T−t)

∫ ∞

−∞

e−
1
2
x2

√
2π

[s exp{(r− 1

2
σ2)(T − t)+σ(T − t)

1
2x}−K]+dx.

We have already evaluated integrals of this type in Chapter IV, where we
obtained the Black-Scholes formula from the binomial model by a passage to
the limit. Completing the square in the exponential as before gives the

Continuous Black-Scholes Formula.

F (t, s) = sΦ(d+)− e−r(T−t)KΦ(d−),

where

d± := [log(s/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t.

§4. Girsanov’s Theorem
Consider first ([KS], §3.5) independentN(0, 1) random variables Z1, · · · , Zn

on (Ω,F ,P). Given a vector µ = (µ1, · · · , µn), consider a new probability
measure P̃ on (Ω,F) defined by

P̃ (dω) = exp{Σn
1µiZi(ω)−

1

2
Σn

1µ
2
i }.P (dω).
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This is a positive measure as exp{.} > 0, and integrates to 1 as
∫
exp{µiZi}dP =

exp{1
2
µ2
i }, so is a probability measure. It is also equivalent to P (has the

same null sets – actually, the only null set are Lebesgue-null sets, in each
case), again as the exponential term is positive. Also

P̃ (Zi ∈ dzi, i = 1, · · · , n) = exp{Σn
1µizi −

1

2
Σn

1µ
2
i }.P (Zi ∈ dzi, i = 1, · · · , n)

= (2π)−
1
2
n exp{Σµizi −

1

2
Σµ2

i −
1

2
Σz2i }Πdzi

= (2π)−
1
2
n exp{−1

2
Σ(zi − µi)

2}dz1 · · · dzn.

This says that if the Zi are independent N(0, 1) under P , they are indepen-
dent N(µi, 1) under P̃ . Thus the effect of the change of measure P → P̃ ,
from the original measure P to the equivalent measure P̃ , is to change the
mean, from 0 = (0, · · · , 0) to µ = (µ1, · · · , µn).

This result extends to infinitely many dimensions – i.e., from random vec-
tors to stochastic processes, indeed with random rather than deterministic
means. We quote (Igor Vladimirovich GIRSANOV (1934-67) in 1960):

Theorem (Girsanov’s Theorem). Let (µt : 0 ≤ t ≤ T ) be an adapted

(e.g., left-continuous) process with
∫ T

0
µ2
tdt < ∞ a.s., and such that the

process (Lt : 0 ≤ t ≤ T ) defined by

Lt = exp{−
∫ t

0

µsdWs −
1

2

∫ t

0

µ2
sds}

is a martingale. Then, under the probability PL with density LT relative to
P , the process W ∗ defined by

W ∗
t := Wt +

∫ t

0

µsds, (0 ≤ t ≤ T )

is a standard Brownian motion.

Here, Lt is the Radon-Nikodym derivative of PL w.r.t. P on the σ-algebra
Ft. In particular, for µt ≡ µ, change of measure by introducing the RN
derivative exp{µWt − 1

2
µ2} corresponds to a change of drift from 0 to µ.

Girsanov’s Theorem (or the Cameron-Martin-Girsanov Theorem) is for-
mulated in varying degrees of generality, and proved, in [KS, §3.5], [RY, VIII].
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Consider now the Black-Scholes model, with dynamics

dBt = rBtdt, dSt = µStdt+ σStdWt.

The discounted asset prices S̃t := e−rtSt have dynamics given, as before, by

dS̃t = −re−rtStdt+ e−rtdSt = −rS̃tdt+ µS̃tdt+ σS̃tdWt

= (µ− r)S̃tdt+ σS̃tdWt.

Now the drift term – the dt term – here prevents S̃t being a martingale;
the noise – dWt – term gives a stochastic integral, which is a martingale.
Girsanov’s theorem suggests the change of measure from P to the equivalent
martingale measure (or risk-neutral measure) P ∗ that makes the discounted
asset price a martingale. This
(i) gives directly the continuous-time version of the Fundamental Theorem
of Asset Pricing: to price assets, take expectations of discounted prices under
the risk-neutral measure;
(ii) allows a probabilistic treatment of the Black-Scholes model, avoiding the
detour via PDEs of §2, §3.

Theorem (Representation Theorem for Brownian Martingales). Let
(Mt : 0 ≤ t ≤ T ) be a square-integrable martingale with respect to the
Brownian filtration (Ft). Then there exists an adapted process H = (Ht :
0 ≤ t ≤ T ) with E

∫
H2

sds < ∞ such that

Mt = M0 +

∫ t

0

HsdWs, 0 ≤ t ≤ T.

That is, all Brownian martingales may be represented as stochastic integrals
with respect to Brownian motion.

We refer to, e.g., [KS], [RY] for proof. The multidimensional version of
the result also holds, and may be proved in the same way.

The economic relevance of the Representation Theorem is that it shows
that the Black-Scholes model is complete – that is, that equivalent martingale
measures are unique. Mathematically, the result is purely a consequence of
properties of the Brownian filtration. The desirable mathematical properties
of Brownian motion are thus seen to have hidden within them desirable eco-
nomic and financial consequences of real practical value.
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