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Lecture 28 15.12.2014
Proof of the Black-Scholes PDE (continued).

Substituting the values above (L27) in the no-arbitrage relation gives

−SF2

F − SF2

.µ+
F

F − SF2

.
F1 + µSF2 +

1
2
σ2F22

F
= r.

So

−SF2µ+ F1 + µSF2 +
1

2
σ2S2F22 = rF − rSF2,

giving

F1 + rSF2 +
1

2
σ2S2F22 − rF = 0. (BS)

This completes the proof of the Black-Scholes PDE. //

Corollary. The no-arbitrage price of the derivative does not depend on the
mean return µ(t, .) of the underlying asset, only on its volatility σ(t, .) and
the short interest-rate.

The Black-Scholes PDE may be solved analytically, or numerically. We
give an alternative probabilistic approach below.

The Black-Scholes PDE is parabolic, and can be transformed into the
heat equation, whose solution can be written down in terms of an integral
and the heat kernel. This is the same as the probabilistic solution obtained
below.
Note. 1. Black and Scholes were classically trained applied mathematicians.
When they derived their PDE, they recognised it as parabolic. After some
months’ work, they were able to transform it into the heat equation. The
solution to this is known classically.1 On transforming back, they obtained
the Black-Scholes formula.

The Black-Scholes formula transformed the financial world. Before it (see

1See e.g. the link to MPC2 (Mathematics and Physics for Chemists, Year 2) on my
website, Weeks 4, 9. The solution is in terms of Green functions. The Green function for
(fundamental solution of) the heat equation has the form of a normal density. This reflects
the close link between the mathematics of the heat equation (J. Fourier (1768-1830) in
1807; Théorie analytique de la chaleur in 1822) and the mathematics of Brownian motion,
which as we have seen belongs to the 20th Century. The link was made by S. Kakutani
in 1944, and involves potential theory.
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Ch. I), the expert view was that asking what an option is worth was (in ef-
fect) a silly question: the answer would necessarily depend on the attitude to
risk of the individual considering buying the option. It turned out that – at
least approximately (i.e., subject to the restrictions to perfect – frictionless
– markets, including No Arbitrage – an over-simplification of reality) there
is an option value. One can see this in one’s head, without doing any math-
ematics, if one knows that the Black-Scholes market is complete (see VI.3
below, VI.4 L29). So, every contingent claim (option, etc.) can be replicated,
in terms of a suitable combination of cash and stock. Anyone can price this:
(i) count the cash, and count the stock;
(ii) look up the current stock price;
(iii) do the arithmetic.
2. The programmable pocket calculator was becoming available around this
time. Every trader immediately got one, and programmed it, so that he
could price an option (using the Black-Scholes model!) in real time, from
market data.
3. The missing quantity in the Black-Scholes formula is the volatility, σ. But,
the price is continuous and strictly increasing in σ (options like volatility!).
So there is exactly one value of σ that gives the price at which options are
being currently traded. The conclusion is that this is the value that the mar-
ket currently judges σ to be. This is the value (called the implied volatility
that traders use.
4. Because the Black-Scholes model is the benchmark model of mathematical
finance, and gives a value for σ at the push of a button, it is widely used.
5. This is despite the fact that no one actually believes the Black-Scholes
model! It gives at best an over-simplified approximation to reality. Indeed,
Fischer Black himself famously once wrote a paper called The holes in Black-
Scholes.
6. This is an interesting example of theory and practice interacting!
7. Black and Scholes has considerable difficulty in getting their paper pub-
lished! It was ahead of its time. When published, and its importance under-
stood, it changed its times.

§3. The Feynman-Kac Formula, Risk-Neutral Valuation and the
Continuous Black-Scholes Formula

Suppose we consider a SDE, with initial condition (IC), of the form

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ), (SDE)
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Xt = x. (IC)

For suitably well-behaved functions µ, σ, this SDE has a unique solution
X = (Xs : t ≤ s ≤ T ), a diffusion. We refer for details on solutions of SDEs
and diffusions to an advanced text such as [RW2], [RY], [KS §5.7]. Uniqueness
of solutions of the SDE is related to completeness, and uniqueness of prices:
see VI.4 L29. This is much as in the FTAP of Ch. IV, but the continuous-
time case is harder – we have to quote uniqueness rather than prove it as we
did there.

Taking existence of a unique solution for granted for the moment, consider
a smooth function F (s,Xs) of it. By Itô’s Lemma,

dF = F1ds+ F2dX +
1

2
F22(dX)2,

and as (dX)2 = (µds+ σdWs)
2 = σ2(dWs)

2 = σ2ds, this is

dF = F1ds+F2(µds+σdWs)+
1

2
σ2F22ds = (F1+µF2+

1

2
σ2F22)ds+σF2dWs.

(∗)
Now suppose that F satisfies the PDE, with boundary condition (BC),

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2F22(t, x) = g(t, x) (PDE)

F (T, x) = h(x). (BC)

Then (∗) gives
dF = gds+ σF2dWs,

which can be written in stochastic-integral form as

F (T,XT ) = F (t,Xt) +

∫ T

t

g(s,Xs)ds+

∫ T

t

σ(s,Xs)F2(s,Xs)dWs.

The stochastic integral on the right is a martingale, so has constant expec-
tation, which must be 0 as it starts at 0. Recalling that Xt = x, writing Et,x

for expectation with value x and starting-time t, and the price at expiry T
as h(XT ) as before, taking Et,x gives

Et,xh(XT ) = F (t, x) + Et,x

∫ T

t

g(s,Xs)ds.
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This gives:

Theorem (Feynman-Kac Formula). The solution F = F (t, x) to the
PDE

F1(t, x) + µ(t, x)F2(t, x) +
1

2
σ2(t, x)F22(t, x) = g(t, x) (PDE)

with final condition F (T, x) = h(x) has the stochastic representation

F (t, x) = Et,xh(XT )− Et,x

∫ T

t

g(s,Xs)ds, (FK)

where X satisfies the SDE

dXs = µ(s,Xs)ds+ σ(s,Xs)dWs (t ≤ s ≤ T ) (SDE)

with initial condition Xt = x.

Now replace µ(t, x) by rx, σ(t, x) by σx, g by rF in the Feynman-Kac
formula above. The SDE becomes

dXs = rXsds+ σXsdWs (∗∗)

– the same as for a risky asset with mean return-rate r (the short interest-
rate for a riskless asset) in place of µ (which disappeared in the Black-Scholes
result). The PDE becomes

F1 + rxF2 +
1

2
σ2x2F22 = rF, (BS)

the Black-Scholes PDE. So by the Feynman-Kac formula,

dF = rFds+ σF2dWs, F (T, s) = h(s).

We can eliminate the first term on the right by discounting at rate r: write
G(s,Xs) := e−rsF (s,Xs) for the discounted price process. Then as before,

dG = −re−rsFds+ e−rsdF = e−rs(dF − rFds) = e−rs.σF2dW.

Then integrating, G is a stochastic integral, so a martingale: the discounted
price process G(s,Xs) = e−rsF (s,Xs) is a martingale, under the measure P ∗

giving the dynamics in (∗∗). This is the measure P we started with, except
that µ has been changed to r. Thus, G has constant P ∗-expectation:

E∗
t,xG(t,Xt) = E∗

t,xe
−rtF (t,Xt) = e−rtF (t, x) = E∗

T,xe
−rTF (T,XT ) = e−rTh(XT ).
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