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Lecture 27 12.12.2014
The Black-Scholes Model (continued)

The discounted value process is

Ṽt(H) = e−rtVt(H)

and the interest rate is r. So

dṼt(H) = −re−rtdt.Vt(H) + e−rtdVt(H)

(since e−rt has finite variation, this follows from integration by parts,

d(XY )t = XtdYt + YtdXt +
1

2
d⟨X, Y ⟩t

– the quadratic covariation of a finite-variation term with any term is zero)

= −re−rtHt.Stdt+ e−rtHt.dSt

= Ht.(−re−rtStdt+ e−rtdSt)

= Ht.dS̃t

(S̃t = e−rtSt, so dS̃t = −re−rtStdt+ e−rtdSt as above): for H self-financing,

dVt(H) = Ht.dSt, dṼt(H) = Ht.dS̃t,

Vt(H) = V0(H) +

∫ t

0

HsdSs, Ṽt(H) = Ṽ0(H) +

∫ t

0

HsdS̃s.

Now write U i
t := H i

tS
i
t/Vt(H) = H i

tS
i
t/ΣjH

j
t S

j
t for the proportion of the

value of the portfolio held in asset i = 0, 1, · · · , d. Then ΣU i
t = 1, and

Ut = (U0
t , · · · , Ud

t ) is called the relative portfolio. For H self-financing,

dVt = Ht.dSt = ΣH i
tdS

i
t = VtΣ

H i
tS

i
t

Vt

.
dSi

t

Si
t

:

dVt = VtΣU
i
tdS

i
t/S

i
t .

Dividing through by Vt, this says that the return dVt/Vt is the weighted
average of the returns dSi

t/S
i
t on the assets, weighted according to their pro-

portions U i
t in the portfolio.

Note. Having set up this notation (that of [HP]) – in order to be able if
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we wish to have a basket of assets in our portfolio – we now prefer – for
simplicity – to specialise back to the simplest case, that of one risky asset.
Thus we will now take d = 1 until further notice.

Arbitrage. This is as in discrete time: an admissible (Vt(H) ≥ 0 for all t)
self-financing strategy H is an arbitrage (strategy, or opportunity) if

V0(H) = 0, VT (H) > 0 with positive P -probability.

The market is viable, or arbitrage-free, or NA, if there are no arbitrage op-
portunities.

We see first that if the value-process V satisfies the SDE

dVt(H) = K(t)Vt(H)dt

– that is, if there is no driving Wiener (or noise) term – then K(t) = r,
the short rate of interest. For, if K(t) > r, we can borrow money from the
bank at rate r and buy the portfolio. The value grows at rate K(t), our debt
grows at rate r, so our net profit grows at rate K(t)− r > 0 – an arbitrage.
Similarly, if K(t) < r, we can invest money in the bank and sell the portfolio
short. Our net profit grows at rate r −K(t) > 0, risklessly – again an arbi-
trage. We have proved the

Proposition. In an arbitrage-free (NA) market, a portfolio whose value
process has no driving Wiener term in its dynamics must have return rate r,
the short rate of interest.

We restrict attention to arbitrage-free (viable) markets from now on.
We now consider tradeable derivatives, whose price at expiry depends

only on S(T ) (the final value of the stock) – h(S(T )), say, and whose price
Πt depends smoothly on the asset price St: for some smooth function F ,

Πt := F (t, St).

The dynamics of the riskless and risky assets are

dBt = rBtdt, dSt = µStdt+ σStdWt,

where µ, σ may depend on both t and St:

µ = µ(t, St), σ = σ(t, St).
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The next result is the celebrated Black-Scholes partial differential equa-
tion (PDE) of 1973, one of the central results of the subject:

Theorem (Black-Scholes PDE). In a market with one riskless asset Bt

and one risky asset St, with short interest-rate r and dynamics

dBt = rBtdt,

dSt = µ(t, St)Stdt+ σ(t, St)StdWt,

let a contingent claim be tradeable, with price h(ST ) at expiry T and price
process Πt := F (t, St) for some smooth function F . Then the only pricing
function F which does not admit arbitrage is the solution to the Black-Scholes
PDE with boundary condition:

F1(t, x) + rxF2(t, x) +
1

2
x2σ2(t, x)F22(t, x)− rF (t, x) = 0, (BS)

F (T, x) = h(x). (BC)

Proof. By Itô’s Lemma,

dΠt = F1dt+ F2dSt +
1

2
F22(dSt)

2

(since t has finite variation, the F11- and F12-terms are absent as (dt)2 and
dtdSt are negligible with respect to the terms retained)

= F1dt+ F2(µStdt+ σStdWt) +
1

2
F22(σStdWt)

2

(since the contribution of the finite-variation term in dt is negligible in the
second differential, as above)

= (F1 + µStF2 +
1

2
σ2St

2F22)dt+ σStF2dWt

(as (dWt)
2 = dt). Now Π = F , so

dΠt = Πt(µΠ(t)dt+ σΠ(t)dWt),

where

µΠ(t) := (F1 + µStF2 +
1

2
σ2S2

t F22)/F, σΠ(t) := σStF2/F.
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Now form a portfolio based on two assets: the underlying stock and the
derivative asset. Let the relative portfolio in stock S and derivative Π be
(US

t , U
Π
t ). Then the dynamics for the value V of the portfolio are given by

dVt/Vt = US
t dSt/St + UΠ

t dΠt/Πt

= US
t (µdt+ σdWt) + UΠ

t (µΠdt+ σΠdWt)

= (US
t µ+ UΠ

t µΠ)dt+ (US
t σ + UΠ

t σΠ)dWt,

by above. Now both brackets are linear in US, UΠ, and US + UΠ = 1 as
proportions sum to 1. This is one linear equation in the two unknowns
US, UΠ, and we can obtain a second one by eliminating the driving Wiener
term in the dynamics of V – for then, the portfolio is riskless, so must
have return r by the Proposition, to avoid arbitrage. We thus solve the two
equations

US + UΠ = 1

USσ + UΠσΠ = 0.

The solution of the two equations above is

UΠ =
σ

σ − σΠ

, US =
−σΠ

σ − σΠ

,

which as σΠ = σSF2/F gives the portfolio explicitly as

UΠ =
F

F − SF2

, US =
−SF2

F − SF2

.

With this choice of relative portfolio, the dynamics of V are given by

dVt/V = (US
t µ+ UΠ

t µΠ)dt,

which has no driving Wiener term. So, no arbitrage as above implies that
the return rate is the short interest rate r:

US
t µ+ UΠ

t µΠ = r.

Now substitute the values (obtained above)

µΠ = (F+µSF2+
1

2
σ2S2F22)/F, US = (−SF2)/(F−SF2), UΠ = F/(F−SF2).
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