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Lecture 25 8.12.2014
Approximation (continued).

It is not possible to include detailed proofs of these assertions in a course
of this type [recall that we did not construct the measure-theoretic integral
of Ch. II in detail either - and this is harder!]. The key technical ingredient
needed is the Kunita-Watanabe inequalities. See e.g. [KS], §§3.1-2.

One can define stochastic integration in much greater generality.
1. Integrands. The natural class of integrands X to use here is the class of
predictable processes. These include the left-continuous processes to which
we confine ourselves above.
2. Integrators. One can construct a closely analogous theory for stochastic
integrals with the Brownian integrator B above replaced by a continuous
local martingale integrator M (or more generally by a local martingale: see
below). The properties above hold, with D replaced by

E[(

∫ t

0

XudMu)
2] = E

∫ t

0

X2
ud⟨M⟩u.

See e.g. [KS], [RY] for details.
One can generalise further to semimartingale integrators: these are pro-

cesses expressible as the sum of a local martingale and a process of (locally)
finite variation. Now C is replaced by: stochastic integrals of local martin-
gales are local martingales. See e.g. [RW1] or Meyer (1976) for details.

§6. Stochastic Differential Equations (SDEs) and Itô’s Lemma

Suppose that U, V are adapted processes,with U locally integrable (so∫ t

0
Usds is defined as an ordinary integral, as in Ch. II), and V is left-

continuous with
∫ t

0
EV 2

u du < ∞ for all t (so
∫ t

0
VsdBs is defined as a stochastic

integral, as in §5). Then

Xt := x0 +

∫ t

0

Usds+

∫ t

0

VsdBs

defines a stochastic process X with X0 = x0. It is customary, and convenient,
to express such an equation symbolically in differential form, in terms of the
stochastic differential equation

dXt = Utdt+ VtdBt, X0 = x0. (SDE)
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Now suppose that f : R2 → R is a function, continuously differentiable
once in its first argument (which will denote time), and twice in its second
argument (space): f ∈ C1,2. The question arises of giving a meaning to the
stochastic differential df(t,Xt) of the process f(t,Xt), and finding it.

Recall the Taylor expansion of a smooth function of several variables,
f(x0, x1, · · · , xd) say. We use suffices to denote partial derivatives: fi :=
∂f/∂xi, fi,j := ∂2f/∂xi∂xj (recall that if partials not only exist but are
continuous, then the order of partial differentiation can be changed: fi,j =
fj,i, etc.). Then for x = (x0, x1, · · · , xd) near u,

f(x) = f(u) + Σd
i=0(xi − ui)fi(u) +

1

2
Σd

i,j=0(xi − ui)(xj − uj)fi,j(u) + · · ·

In our case (writing t0 in place of 0 for the starting time):

f(t,Xt) = f(t0, X(t0))+(t−t0)f1(t0, X(t0))+(X(t)−X(t0))f2+
1

2
(t−t0)

2f11+

(t− t0)(X(t)−X(t0))f12 +
1

2
(X(t)−X(t0))

2f22 + · · · ,

which may be written symbolically as

df(t,X(t)) = f1dt+ f2dX +
1

2
f11(dt)

2 + f12dtdX +
1

2
f22(dX)2 + · · · .

In this, we
(i) substitute dXt = Utdt+ VtdBt from above,
(ii) substitute (dBt)

2 = dt, i.e. |dBt| =
√
dt, from §4:

df = f1dt+f2(Udt+V dB)+
1

2
f11(dt)

2+f12dt(Udt+V dB)+
1

2
f22(Udt+V dB)2+· · ·

Now using (dB)2 = dt,

(Udt+ V dB)2 = V 2dt+ 2UV dtdB + U2(dt)2

= V 2dt+ higher-order terms :

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dB + higher-order terms.

Summarising, we obtain Itô’s Lemma, the analogue for the Itô or stochastic
calculus of the chain rule for ordinary (Newton-Leibniz) calculus:
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Theorem (Itô’s Lemma). If Xt has stochastic differential

dXt = Utdt+ VtdBt, X0 = x0,

and f ∈ C1,2, then f = f(t,Xt) has stochastic differential

df = (f1 + Uf2 +
1

2
V 2f22)dt+ V f2dBt.

That is, writing f0 for f(0, x0), the initial value of f ,

f(t,Xt)) = f0 +

∫ t

0

(f1 + Uf2 +
1

2
V 2f22)dt+

∫ t

0

V f2dB.

This important result may be summarised as follows: use Taylor’s theo-
rem formally, together with the rule

(dt)2 = 0, dtdB = 0, (dB)2 = dt.

Itô’s Lemma extends to higher dimensions, as does the rule above:

df = (f0 + Σd
i=1Uifi +

1

2
Σd

1V
2
i fii)dt+ Σd

1VifidBi

(where Ui, Vi, Bi denote the ith coordinates of vectors U, V,B, fi, fii denote
partials as above); here the formal rule is

(dt)2 = 0, dtdBi = 0, (dBi)
2 = dt, dBidBj = 0 (i ̸= j).

Corollary. Ef(t,Xt) = f0 +
∫ t

0
E[f1 + Uf2 +

1
2
V 2f22]dt.

Proof.
∫ t

0
V f2dB is a stochastic integral, so a martingale, so its expectation

is constant (= 0, as it starts at 0). //

Note. Powerful as it is in the setting above, Itô’s Lemma really comes into its
own in the more general setting of semimartingales. It says there that if X is
a semimartingale and f is a smooth function as above, then f(t,X(t)) is also
a semimartingale. The ordinary differential dt gives rise to the bounded-
variation part, the stochastic differential gives rise to the martingale part.
This closure property under very general non-linear operations is very pow-
erful and important.
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Example: The Ornstein-Uhlenbeck Process.
The most important example of a SDE for us is that for geometric Brow-

nian motion (VI.1 below). We close here with another example.
Consider now a model of the velocity Vt of a particle at time t (V0 = v0),

moving through a fluid or gas, which exerts
(i) a frictional drag, assumed propertional to the velocity,
(ii) a noise term resulting from the random bombardment of the particle by
the molecules of the surrounding fluid or gas. The basic model is the SDE

dV = −βV dt+ cdB, (OU)

whose solution is called the Ornstein-Uhlenbeck (velocity) process with re-
laxation time 1/β and diffusion coefficient D := 1

2
c2/β2. It is a stationary

Gaussian Markov process (not stationary-increments Gaussian Markov like
Brownian motion), whose limiting (ergodic) distribution is N(0, βD) and
whose limiting correlation function is e−β|.|.

If we integrate the OU velocity process to get the OU displacement pro-
cess, we lose the Markov property (though the process is still Gaussian).
Being non-Markov, the resulting process is much more difficult to analyse.

The OU process is the prototype of processes exhibiting mean reversion,
or a central push: frictional drag acts as a restoring force tending to push the
process back towards its mean. It is important in many areas, including
(i) statistical mechanics, where it originated,
(ii) mathematical finance, where it appears in the Vasicek model for the term-
structure of interest-rates (the mean represents the ‘natural’ interest rate),
(iii) stochastic volatility models, where the volatility σ itself is now a stochas-
tic process σt, subject to an SDE of OU type.
Theory of interest rates.

This subject dominates the mathematics of money market, or bond mar-
kets. These are more important in today’s world than stock markets, but are
more complicated, so we must be brief here. The area is crucially important
in macro-economic policy, and in political decision-making, particularly after
the financial crisis (”credit crunch”). Government policy is driven by fear of
speculators in the bond markets (rather than aimed at inter-governmental
cooperation against them). The mathematics is infinite-dimensional (at each
time-point t we have a whole yield curve over future times), but reduces to
finite-dimensionality: bonds are only offered at discrete times, with a tenor
structure (a finite set of maturity times).
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