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§5. Stochastic Integrals (Itô Calculus)

Stochastic integration was introduced by K. ITÔ in 1944, hence its name
Itô calculus. It gives a meaning to

∫ t

0
XdY =

∫ t

0
Xs(ω)dYs(ω), for suitable

stochastic processes X and Y , the integrand and the integrator. We shall con-
fine our attention here to the basic case with integrator Brownian motion:
Y = B. Much greater generality is possible: for Y a continuous martingale,
see [KS] or [RY]; for a systematic general treatment, see
MEYER, P.-A. (1976): Un cours sur les intégrales stochastiques. Séminaire
de Probabilités X: Lecture Notes on Math. 511, 245-400, Springer.

The first thing to note is that stochastic integrals with respect to Brown-
ian motion, if they exist, must be quite different from the measure-theoretic
integral of Ch. II.2. For, the Lebesgue-Stieltjes integrals described there
have as integrators the difference of two monotone (increasing) functions (by
Jordan’s theorem), which are locally of finite (bounded) variation, FV. But
we know from §4 that Brownian motion is of infinite (unbounded) variation
on every interval. So Lebesgue-Stieltjes and Itô integrals must be fundamen-
tally different.

In view of the above, it is quite surprising that Itô integrals can be de-
fined at all. But if we take for granted Itô’s fundamental insight that they
can be, it is obvious how to begin and clear enough how to proceed. We
begin with the simplest possible integrands X, and extend successively much
as we extended the measure-theoretic integral of Ch. II.

1. Indicators.
If Xt(ω) = I[a,b](t), there is exactly one plausible way to define

∫
XdB:

∫ t

0

XdB, or

∫ t

0

Xs(ω)dBs(ω), :=


0 if t ≤ a,
Bt −Ba if a ≤ t ≤ b,
Bb −Ba if t ≥ b.

2. Simple functions. Extend by linearity: if X is a linear combination of
indicators, X = ΣciI[ai,bi], we should define∫ t

0

XdB := Σci

∫ t

0

I[ai,bi]dB.
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Already one wonders how to extend this from constants ci to suitable ran-
dom variables, and one seeks to simplify the obvious but clumsy three-line
expressions above. It turns out that finite sums are not essential: one can
have infinite sums, but now we take the ci uniformly bounded.

We begin again, this time calling a stochastic process X simple if there is
an infinite sequence

0 = t0 < t1 < · · · < tn < · · · → ∞

and uniformly bounded Ftn-measurable random variables ξn (|ξn| ≤ C for all
n and ω, for some C) if Xt(ω) can be written in the form

Xt(ω) = ξ0(ω)I{0}(t) + Σ∞
i=0ξi(ω)I(ti,ti+1](t) (0 ≤ t < ∞, ω ∈ Ω).

The only definition of
∫ t

0
XdB that agrees with the above for finite sums is,

if n is the unique integer with tn ≤ t < tn+1,

It(X) :=

∫ t

0

XdB = Σn−1
0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn))

= Σ∞
0 ξi(B(t ∧ ti+1)−B(t ∧ ti)) (0 ≤ t < ∞).

We note here some properties of the stochastic integral defined so far:

A. I0(X) = 0 P − a.s.

B. Linearity. It(aX + bY ) = aIt(X) + bIt(Y ).
Proof. Linear combinations of simple functions are simple.

C. E[It(X)|Fs] = Is(X) P − a.s. (0 ≤ s < t < ∞) :
It(X) is a continuous martingale.
Proof. There are two cases to consider.
(i) Both s and t belong to the same interval [tn, tn+1). Then

It(X) = Is(X) + ξn(B(t)−B(s)).

But ξn is Ftn-measurable, so Fs-measurable (tn ≤ s), so independent of
B(t)−B(s) (independent increments property of B). So

E[It(X)|Fs] = Is(X) + ξnE[B(t)−B(s)|Fs] = Is(X).

2



(ii) s < t and t belong to different intervals: s ∈ [tm, tm+1) for m < n. Then

E[It(x)|Fs] = E(E[It(X)|Ftn ]|Fs) (iterated conditional expectations)

= E(Itn(X)|Fs),

since ξn Ftn-measurable and independent increments of B give

E[ξn(B(t)−B(tn))|Ftn ] = ξnE[B(t)−B(tn)|Ftn ] = ξn.0 = 0.

Continuing in this way, we can reduce successively to tm+1:

E[It(X)|Fs] = E[Itm(X)|Fs].

But Itm(X) = Is(X) + ξm(B(s) − B(tm)); taking E[.|Fs] the second term
gives zero as above, giving the result. //

Note. The stochastic integral for simple integrands is essentially a martingale
transform, and the above is essentially the proof of Ch. III that martingale
transforms are martingales.

We pause to note a property of martingales which we shall need below.
Call Xt − Xs the increment of X over (s, t]. Then for a martingale X,
the product of the increments over disjoint intervals has zero mean. For, if
s < t ≤ u < v,

E[(Xv −Xu)(Xt −Xs)] = E[E[(Xv −Xu)(Xt −Xs)|Fu]]

= E[(Xt −Xs)E[(Xv −Xu)|Fu]],

taking out what is known (as s, t ≤ u). The inner expectation is zero by the
martingale property, so the LHS is zero, as required.

D (Itô isometry). E[(It(X))2], or E[(
∫ t

0
XsdBs)

2], = E
∫ t

0
X2

sds.
Proof. The LHS above is E[It(X).It(X)], i.e.

E[(Σn−1
i=0 ξi(B(ti+1)−B(ti)) + ξn(B(t)−B(tn)))

2].

Expanding the square, the cross-terms have expectation zero by above, so

E[Σn−1
i=0 ξ

2
i (B(ti+i −B(ti))

2 + ξ2n(B(t)−B(tn))
2].
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Since ξi is Fti-measurable, each ξ2i -term is independent of the squared Brown-
ian increment term following it, which has expectation var(B(ti+1)−B(ti)) =
ti+1 − ti. So we obtain

Σn−1
i=0 E[ξ2i ](ti+1 − ti) + E[ξ2n](t− tn).

This is
∫ t

0
E[X2

u]du = E
∫ t

0
X2

udu, as required.

E. Itô isometry (continued). It(X)− Is(X) =
∫ t

s
XudBu satisfies

E[(

∫ t

s

XudBu)
2] = E[

∫ t

s

X2
udu] P − a.s.

Proof: as above.

F. Quadratic variation. The QV of It(X) =
∫ t

0
XudBu is

∫ t

0
X2

udu.
This is proved in the same way as the case X ≡ 1, that B has quadratic

variation process t.

Integrands.
The properties above suggest that

∫ t

0
XdB should be defined only for

processes with ∫ t

0

EX2
udu < ∞ for all t.

We shall restrict attention to such X in what follows. This gives us an L2-
theory of stochastic integration (compare the L2-spaces introduced in Ch.
II), for which Hilbert-space methods are available.

3. Approximation.
Recall steps 1 (indicators) and 2 (simple integrands). By analogy with

the integral of Ch. II, we seek a suitable class of integrands suitably approx-
imable by simple integrands. It turns out that:
(i) The suitable class of integrands is the class of left-continuous adapted
processes X with

∫ t

0
EX2

udu < ∞ for all t > 0 (or all t ∈ [0, T ] with finite
time-horizon T , as here),
(ii) Each such X may be approximated by a sequence of simple integrands
Xn so that the stochastic integral It(X) =

∫ t

0
XdB may be defined as the

limit of It(Xn) =
∫ t

0
XndB,

(iii) The stochastic integral
∫ t

0
XdB so defined still has properties A-F above.

4


