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Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; It6’s Lemma

Recall that for & N(u,0?), € has moment-generating function (MGF)

1
M(t) := FEexp{t} = exp{ut + 502252}.
Take p = 0 below; for & N(0,0?),
1
M(t) :== Fexp{t{} = exp{502t2}
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So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),
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E() =var =0, E()=30", so war(¢&®)=E(E)—[EE)]
For B BM, this gives in particular
EB, =0, varB, =1, E[(B)’] =t, var[(By)?] = 2t%.

In particular, for ¢ > 0 small, this shows that the variance of B? is negligible
compared with its expected value. Thus, the randomness in B? is negligible
compared to its mean for ¢ small.



This suggests that if we take a fine enough partition P of [0, 7] — a finite
set of points
O=to<t1 <---<tp=T

with |P| := max |t; — t;_1| small enough — then writing
AB(tz) = B(tz) - B(ti_l), Atl = ti - ti—la

S(AB(t;))* will closely resemble SE[(AB(t;)%], which is ¥At; = N(t; —
t;—1) = T. This is in fact true a.s.:

E(AB(Q))Q — ZAtz =T as max |tl — ti,ﬂ — 0.

This limit is called the quadratic variation V2 of B over [0,T]:

Theorem. The quadratic variation of a Brownian path over [0, 7] exists and
equals T, a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L738.

If we increase ¢t by a small amount to t 4 dt, the increase in the QV can
be written symbolically as (dB;)*, and the increase in ¢ is dt. So, formally
we may summarise the theorem as

(dB,)” = dt.

Suppose now we look at the ordinary variation X|AB,|, rather than the
quadratic variation ©(AB,)*. Then instead of L(AB,;)* ~ AL ~ t, we get
Y|AB| ~ YWAL. Now for At small, VAL is of a larger order of magnitude
that At. So if At = ¢ converges, ©v/At diverges to +oo. This suggests —
what is in fact true — the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +00 on every interval, a.s.

The QV result above leads to Lévy’s 1948 result, the Martingale Char-
acterization of BM. Recall that B, is a continuous martingale with respect
to its natural filtration (F;) and with QV ¢. There is a remarkable converse;
we give two forms.



Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (F;)-martingale with My, = 0 and
quadratic variation ¢, then M is an (F;)-Brownian motion.

Theorem (Lévy). If M is any continuous (F;)-martingale with My = 0
and M? —t a martingale, then M is an (F;)-Brownian motion.

For proof, see e.g. [RW1], 1.2. Observe that for s < t,

B} = [Bs+ (Bi = By)] = B{ +2B,(B, — B,) + (B, - B,)’,
E[B}F.] = B+ 2B,E[(B; — B,)|Fs] + E[(B; — B,)*|F.] = B2+ 0+ (t —s) :
E[B} —t|F)| =B —s:

B? — t is a martingale.
Quadratic Variation (QV).
The theory above extends to continuous martingales (bounded continu-

ous martingales in general, but we work on a finite time-interval [0, 7], so
continuity implies boundedness). We quote (for proof, see e.g. [RY], IV.1):

Theorem. A continuous martingale M is of finite quadratic variation (M),
and (M) is the unique continuous increasing adapted process vanishing at
zero with M? — (M) a martingale.

Corollary. A continuous martingale M has infinite variation.

Quadratic Covariation. We write (M, M) for (M), and extend ( ) to a bilin-
ear form (.,.) with two different arguments by the polarization identity:

1
(M,N) = 7((M + N, M+ N) = (M = N,M — N)).
If N is of finite variation, M + N has the same QV as M, so (M, N) = 0.

Ito’s Lemma. We discuss [t6’s Lemma in more detail in §6 below; we pause
here to give the link with quadratic variation and covariation. We quote: if
f(t,zy,- -+, x4) is C!in its zeroth (time) argument ¢ and C? in its remaining
d space arguments z;, and M = (M!,--- M%) is a continuous vector mar-
tingale, then (writing f;, fi; for the first partial derivatives of f with respect
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to its ith argument and the second partial derivatives with respect to the ¢th
and jth arguments) f(M;) has stochastic differential

df (My) = fo(M)dt + XL, f;(M;)dM; + 52;.{].:1 fii(My)d{M', M7),.
Integration by Parts. If f(t,zq,x2) = x122, We obtain
1
A(MN), = NaM, + MdN, + 5 (M, N),.

Similarly for stochastic integrals (defined below): if Z; :== [ H;dM; (i = 1,2),
d(Zl, Z2> = H1H2d<M1, M2>

Note. The integration-by-parts formula — a special case of It6’s Lemma, as
above — is in fact equivalent to It6’s Lemma: either can be used to derive the
other. Rogers & Williams [RW1, 1V.32.4] describe the integration-by-parts
formula/Tt6’s Lemma as ‘the cornerstone of stochastic calculus’.

Fractals Everywhere.

As we saw, a Brownian path is a fractal — a self-similar object. So too is
its zero-set Z. Fractals were studied, named and popularised by the French
mathematician Benoit B. Mandelbrot (1924-2010). See his books, and
Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales — diametrically opposite to the familiar
functions of Calculus. In Differential Calculus, a differentiable function has a
tangent; this means that locally, its graph looks straight; similarly in Integral
Calculus. While most continuous functions we encounter are differentiable,
at least piecewise (i.e., except for ‘kinks’), there is a sense in which the typi-
cal, or generic, continuous function is nowhere differentiable. Thus Brownian
paths may look pathological at first sight — but in fact they are typical!
Hedging in continuous time.

Imagine hedging an option in continuous time. In discrete time, this
involves repeatedly rebalancing our portfolio between cash and stock; in con-
tinuous time, this has to be done continuously. The relevant stochastic pro-
cesses (Ch. VI) are geometric Brownian motion (GBM), relatives of BM,
which, like BM, have infinite variation (finite QV). This makes the rebalanc-
ing problematic — indeed, impossible in these terms. Analogy: a cyclist has
to rebalance continuously, but does so smoothly, not with infinite variation!
Or, think of continuous-time control of a manned space-craft (Kalman filter).
In practice, hedging has to be done discretely (as in Ch. IV). Or, we can
use price processes with jumps — finite variation, but now the markets are
incomplete.



