m3a22l23tex
Lecture 23 2.12.2014

Corollary. X is self-similar (reproduces itself under scaling), so a Brownian path $X($.$) is a fractal. So too is the zero-set Z$.

Brownian motion owes part of its importance to belonging to all the important classes of stochastic processes: it is (strong) Markov, a (continuous) martingale, Gaussian, a diffusion, a Lévy process (process with stationary independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; Itô's Lemma

Recall that for $\xi N\left(\mu, \sigma^{2}\right), \xi$ has moment-generating function (MGF)

$$
M(t):=E \exp \{t \xi\}=\exp \left\{\mu t+\frac{1}{2} \sigma^{2} t^{2}\right\}
$$

Take $\mu=0$ below; for $\xi N\left(0, \sigma^{2}\right)$,

$$
\begin{aligned}
M(t):=E \exp \{t \xi\} & =\exp \left\{\frac{1}{2} \sigma^{2} t^{2}\right\} \\
& =1+\frac{1}{2} \sigma^{2} t^{2}+\frac{1}{2!}\left(\frac{1}{2} \sigma^{2} t^{2}\right)^{2}+O\left(t^{6}\right) \\
& =1+\frac{1}{2!} \sigma^{2} t^{2}+\frac{3}{4!} \sigma^{4} t^{4}+O\left(t^{6}\right) .
\end{aligned}
$$

So as the Taylor coefficients of the MGF are the moments (hence the name MGF!),

$$
E\left(\xi^{2}\right)=\operatorname{var} \xi=\sigma^{2}, \quad E\left(\xi^{4}\right)=3 \sigma^{4}, \quad \text { so } \quad \operatorname{var}\left(\xi^{2}\right)=E\left(\xi^{4}\right)-\left[E\left(\xi^{2}\right)\right]^{2}=2 \sigma^{4}
$$

For $B B M$, this gives in particular

$$
E B_{t}=0, \quad \operatorname{var} B_{t}=t, \quad E\left[\left(B_{t}\right)^{2}\right]=t, \quad \operatorname{var}\left[\left(B_{t}\right)^{2}\right]=2 t^{2} .
$$

In particular, for $t>0 \mathrm{small}$, this shows that the variance of B_{t}^{2} is negligible compared with its expected value. Thus, the randomness in B_{t}^{2} is negligible compared to its mean for t small.

This suggests that if we take a fine enough partition \mathcal{P} of $[0, T]$ - a finite set of points

$$
0=t_{0}<t_{1}<\cdots<t_{k}=T
$$

with $|\mathcal{P}|:=\max \left|t_{i}-t_{i-1}\right|$ small enough - then writing

$$
\Delta B\left(t_{i}\right):=B\left(t_{i}\right)-B\left(t_{i-1}\right), \quad \Delta t_{i}:=t_{i}-t_{i-1},
$$

$\Sigma\left(\Delta B\left(t_{i}\right)\right)^{2}$ will closely resemble $\Sigma E\left[\left(\Delta B\left(t_{i}\right)^{2}\right]\right.$, which is $\Sigma \Delta t_{i}=\Sigma\left(t_{i}-\right.$ $\left.t_{i-1}\right)=T$. This is in fact true a.s.:

$$
\Sigma\left(\Delta B\left(t_{i}\right)\right)^{2} \rightarrow \Sigma \Delta t_{i}=T \quad \text { as } \quad \max \left|t_{i}-t_{i-1}\right| \rightarrow 0
$$

This limit is called the quadratic variation V_{T}^{2} of B over $[0, T]$:
Theorem. The quadratic variation of a Brownian path over $[0, T]$ exists and equals T, a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.
If we increase t by a small amount to $t+d t$, the increase in the QV can be written symbolically as $\left(d B_{t}\right)^{2}$, and the increase in t is $d t$. So, formally we may summarise the theorem as

$$
\left(d B_{t}\right)^{2}=d t
$$

Suppose now we look at the ordinary variation $\Sigma\left|\Delta B_{t}\right|$, rather than the quadratic variation $\Sigma\left(\Delta B_{t}\right)^{2}$. Then instead of $\Sigma\left(\Delta B_{t}\right)^{2} \sim \Sigma \Delta t \sim t$, we get $\Sigma\left|\Delta B_{t}\right| \sim \Sigma \sqrt{\Delta t}$. Now for Δt small, $\sqrt{\Delta t}$ is of a larger order of magnitude that Δt. So if $\Sigma \Delta t=t$ converges, $\Sigma \sqrt{\Delta t}$ diverges to $+\infty$. This suggests what is in fact true - the

Corollary. The paths of Brownian motion are of infinite variation - their variation is $+\infty$ on every interval, a.s.

The QV result above leads to Lévy's 1948 result, the Martingale Characterization of BM . Recall that B_{t} is a continuous martingale with respect to its natural filtration $\left(\mathcal{F}_{t}\right)$ and with $\mathrm{QV} t$. There is a remarkable converse; we give two forms.

Theorem (Lévy; Martingale Characterization of Brownian Motion). If M is any continuous local $\left(\mathcal{F}_{t}\right)$-martingale with $M_{0}=0$ and quadratic variation t, then M is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

Theorem (Lévy). If M is any continuous $\left(\mathcal{F}_{t}\right)$-martingale with $M_{0}=0$ and $M_{t}^{2}-t$ a martingale, then M is an $\left(\mathcal{F}_{t}\right)$-Brownian motion.

For proof, see e.g. [RW1], I.2. Observe that for $s<t$,

$$
\begin{gathered}
B_{t}^{2}=\left[B_{s}+\left(B_{t}-B_{s}\right)\right]^{2}=B_{s}^{2}+2 B_{s}\left(B_{t}-B_{s}\right)+\left(B_{t}-B_{s}\right)^{2} \\
E\left[B_{t}^{2} \mid \mathcal{F}_{s}\right]=B_{s}^{2}+2 B_{s} E\left[\left(B_{t}-B_{s}\right) \mid \mathcal{F}_{s}\right]+E\left[\left(B_{t}-B_{s}\right)^{2} \mid \mathcal{F}_{s}\right]=B_{s}^{2}+0+(t-s): \\
E\left[B_{t}^{2}-t \mid \mathcal{F}_{s}\right]=B_{s}^{2}-s:
\end{gathered}
$$

$B_{t}^{2}-t$ is a martingale.
Quadratic Variation (QV).
The theory above extends to continuous martingales (bounded continuous martingales in general, but we work on a finite time-interval $[0, T]$, so continuity implies boundedness). We quote (for proof, see e.g. [RY], IV.1):

Theorem. A continuous martingale M is of finite quadratic variation $\langle M\rangle$, and $\langle M\rangle$ is the unique continuous increasing adapted process vanishing at zero with $M^{2}-\langle M\rangle$ a martingale.

Corollary. A continuous martingale M has infinite variation.
Quadratic Covariation. We write $\langle M, M\rangle$ for $\langle M\rangle$, and extend \rangle to a bilinear form $\langle.,$.$\rangle with two different arguments by the polarization identity:$

$$
\langle M, N\rangle:=\frac{1}{4}(\langle M+N, M+N\rangle-\langle M-N, M-N\rangle) .
$$

If N is of finite variation, $M \pm N$ has the same QV as M, so $\langle M, N\rangle=0$.
Itô's Lemma. We discuss Itô's Lemma in more detail in $\S 6$ below; we pause here to give the link with quadratic variation and covariation. We quote: if $f\left(t, x_{1}, \cdots, x_{d}\right)$ is C^{1} in its zeroth (time) argument t and C^{2} in its remaining d space arguments x_{i}, and $M=\left(M^{1}, \cdots, M^{d}\right)$ is a continuous vector martingale, then (writing $f_{i}, f_{i j}$ for the first partial derivatives of f with respect
to its i th argument and the second partial derivatives with respect to the i th and j th arguments) $f\left(M_{t}\right)$ has stochastic differential

$$
d f\left(M_{t}\right)=f_{0}(M) d t+\Sigma_{i=1}^{d} f_{i}\left(M_{t}\right) d M_{t}^{i}+\frac{1}{2} \Sigma_{i, j=1}^{d} f_{i j}\left(M_{t}\right) d\left\langle M^{i}, M^{j}\right\rangle_{t}
$$

Integration by Parts. If $f\left(t, x_{1}, x_{2}\right)=x_{1} x_{2}$, we obtain

$$
d(M N)_{t}=N d M_{t}+M d N_{t}+\frac{1}{2}\langle M, N\rangle_{t} .
$$

Similarly for stochastic integrals (defined below): if $Z_{i}:=\int H_{i} d M_{i}(i=1,2)$, $d\left\langle Z_{1}, Z_{2}\right\rangle=H_{1} H_{2} d\left\langle M_{1}, M_{2}\right\rangle$.
Note. The integration-by-parts formula - a special case of Itô's Lemma, as above - is in fact equivalent to Itô's Lemma: either can be used to derive the other. Rogers \& Williams [RW1, IV.32.4] describe the integration-by-parts formula/Itô's Lemma as 'the cornerstone of stochastic calculus'.
Fractals Everywhere.
As we saw, a Brownian path is a fractal - a self-similar object. So too is its zero-set Z. Fractals were studied, named and popularised by the French mathematician Benôit B. Mandelbrot (1924-2010). See his books, and Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales - diametrically opposite to the familiar functions of Calculus. In Differential Calculus, a differentiable function has a tangent; this means that locally, its graph looks straight; similarly in Integral Calculus. While most continuous functions we encounter are differentiable, at least piecewise (i.e., except for 'kinks'), there is a sense in which the typical, or generic, continuous function is nowhere differentiable. Thus Brownian paths may look pathological at first sight - but in fact they are typical! Hedging in continuous time.

Imagine hedging an option in continuous time. In discrete time, this involves repeatedly rebalancing our portfolio between cash and stock; in continuous time, this has to be done continuously. The relevant stochastic processes (Ch. VI) are geometric Brownian motion (GBM), relatives of BM, which, like BM, have infinite variation (finite QV). This makes the rebalancing problematic - indeed, impossible in these terms. Analogy: a cyclist has to rebalance continuously, but does so smoothly, not with infinite variation! Or, think of continuous-time control of a manned space-craft (Kalman filter). In practice, hedging has to be done discretely (as in Ch. IV). Or, we can use price processes with jumps - finite variation, but now the markets are incomplete.

