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Corollary. X is self-similar (reproduces itself under scaling), so a Brownian
path X(.) is a fractal. So too is the zero-set Z.

Brownian motion owes part of its importance to belonging to all the im-
portant classes of stochastic processes: it is (strong) Markov, a (continuous)
martingale, Gaussian, a diffusion, a Lévy process (process with stationary
independent increments), etc.

§4. Quadratic Variation (QV) of Brownian Motion; Itô’s Lemma

Recall that for ξ N(µ, σ2), ξ has moment-generating function (MGF)

M(t) := E exp{tξ} = exp{µt+ 1

2
σ2t2}.

Take µ = 0 below; for ξ N(0, σ2),

M(t) := E exp{tξ} = exp{1
2
σ2t2}

= 1 +
1

2
σ2t2 +

1

2!
(
1

2
σ2t2)

2

+O(t6)

= 1 +
1

2!
σ2t2 +

3

4!
σ4t4 +O(t6).

So as the Taylor coefficients of the MGF are the moments (hence the name
MGF!),

E(ξ2) = varξ = σ2, E(ξ4) = 3σ4, so var(ξ2) = E(ξ4)−[E(ξ2)]
2
= 2σ4.

For B BM , this gives in particular

EBt = 0, varBt = t, E[(Bt)
2] = t, var[(Bt)

2] = 2t2.

In particular, for t > 0 small, this shows that the variance of B2
t is negligible

compared with its expected value. Thus, the randomness in B2
t is negligible

compared to its mean for t small.
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This suggests that if we take a fine enough partition P of [0, T ] – a finite
set of points

0 = t0 < t1 < · · · < tk = T

with |P| := max |ti − ti−1| small enough – then writing

∆B(ti) := B(ti)−B(ti−1), ∆ti := ti − ti−1,

Σ(∆B(ti))
2 will closely resemble ΣE[(∆B(ti)

2], which is Σ∆ti = Σ(ti −
ti−1) = T . This is in fact true a.s.:

Σ(∆B(ti))
2 → Σ∆ti = T as max |ti − ti−1| → 0.

This limit is called the quadratic variation V 2
T of B over [0, T ]:

Theorem. The quadratic variation of a Brownian path over [0, T ] exists and
equals T , a.s.

For details of the proof, see e.g. [BK], §5.3.2, SP L22, SA L7,8.

If we increase t by a small amount to t + dt, the increase in the QV can
be written symbolically as (dBt)

2, and the increase in t is dt. So, formally
we may summarise the theorem as

(dBt)
2 = dt.

Suppose now we look at the ordinary variation Σ|∆Bt|, rather than the
quadratic variation Σ(∆Bt)

2. Then instead of Σ(∆Bt)
2 ∼ Σ∆t ∼ t, we get

Σ|∆Bt| ∼ Σ
√
∆t. Now for ∆t small,

√
∆t is of a larger order of magnitude

that ∆t. So if Σ∆t = t converges, Σ
√
∆t diverges to +∞. This suggests –

what is in fact true – the

Corollary. The paths of Brownian motion are of infinite variation - their
variation is +∞ on every interval, a.s.

The QV result above leads to Lévy’s 1948 result, the Martingale Char-
acterization of BM. Recall that Bt is a continuous martingale with respect
to its natural filtration (Ft) and with QV t. There is a remarkable converse;
we give two forms.
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Theorem (Lévy; Martingale Characterization of Brownian Mo-
tion). If M is any continuous local (Ft)-martingale with M0 = 0 and
quadratic variation t, then M is an (Ft)-Brownian motion.

Theorem (Lévy). If M is any continuous (Ft)-martingale with M0 = 0
and M2

t − t a martingale, then M is an (Ft)-Brownian motion.

For proof, see e.g. [RW1], I.2. Observe that for s < t,

B2
t = [Bs + (Bt −Bs)]

2 = B2
s + 2Bs(Bt −Bs) + (Bt −Bs)

2,

E[B2
t |Fs] = B2

s +2BsE[(Bt −Bs)|Fs] +E[(Bt −Bs)
2|Fs] = B2

s +0+ (t− s) :

E[B2
t − t|Fs] = B2

s − s :

B2
t − t is a martingale.

Quadratic Variation (QV).
The theory above extends to continuous martingales (bounded continu-

ous martingales in general, but we work on a finite time-interval [0, T ], so
continuity implies boundedness). We quote (for proof, see e.g. [RY], IV.1):

Theorem. A continuous martingale M is of finite quadratic variation ⟨M⟩,
and ⟨M⟩ is the unique continuous increasing adapted process vanishing at
zero with M2 − ⟨M⟩ a martingale.

Corollary. A continuous martingale M has infinite variation.

Quadratic Covariation. We write ⟨M,M⟩ for ⟨M⟩, and extend ⟨ ⟩ to a bilin-
ear form ⟨., .⟩ with two different arguments by the polarization identity:

⟨M,N⟩ := 1

4
(⟨M +N,M +N⟩ − ⟨M −N,M −N⟩).

If N is of finite variation, M ±N has the same QV as M , so ⟨M,N⟩ = 0.

Itô’s Lemma. We discuss Itô’s Lemma in more detail in §6 below; we pause
here to give the link with quadratic variation and covariation. We quote: if
f(t, x1, · · · , xd) is C

1 in its zeroth (time) argument t and C2 in its remaining
d space arguments xi, and M = (M1, · · · ,Md) is a continuous vector mar-
tingale, then (writing fi, fij for the first partial derivatives of f with respect
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to its ith argument and the second partial derivatives with respect to the ith
and jth arguments) f(Mt) has stochastic differential

df(Mt) = f0(M)dt+ Σd
i=1fi(Mt)dM

i
t +

1

2
Σd

i,j=1fij(Mt)d⟨M i,M j⟩t.

Integration by Parts. If f(t, x1, x2) = x1x2, we obtain

d(MN)t = NdMt +MdNt +
1

2
⟨M,N⟩t.

Similarly for stochastic integrals (defined below): if Zi :=
∫
HidMi (i = 1, 2),

d⟨Z1, Z2⟩ = H1H2d⟨M1,M2⟩.
Note. The integration-by-parts formula – a special case of Itô’s Lemma, as
above – is in fact equivalent to Itô’s Lemma: either can be used to derive the
other. Rogers & Williams [RW1, IV.32.4] describe the integration-by-parts
formula/Itô’s Lemma as ‘the cornerstone of stochastic calculus’.
Fractals Everywhere.

As we saw, a Brownian path is a fractal – a self-similar object. So too is
its zero-set Z. Fractals were studied, named and popularised by the French
mathematician Benôit B. Mandelbrot (1924-2010). See his books, and
Michael F. Barnsley: Fractals everywhere. Academic Press, 1988.

Fractals look the same at all scales – diametrically opposite to the familiar
functions of Calculus. In Differential Calculus, a differentiable function has a
tangent; this means that locally, its graph looks straight; similarly in Integral
Calculus. While most continuous functions we encounter are differentiable,
at least piecewise (i.e., except for ‘kinks’), there is a sense in which the typi-
cal, or generic, continuous function is nowhere differentiable. Thus Brownian
paths may look pathological at first sight – but in fact they are typical!
Hedging in continuous time.

Imagine hedging an option in continuous time. In discrete time, this
involves repeatedly rebalancing our portfolio between cash and stock; in con-
tinuous time, this has to be done continuously. The relevant stochastic pro-
cesses (Ch. VI) are geometric Brownian motion (GBM), relatives of BM,
which, like BM, have infinite variation (finite QV). This makes the rebalanc-
ing problematic – indeed, impossible in these terms. Analogy: a cyclist has
to rebalance continuously, but does so smoothly, not with infinite variation!
Or, think of continuous-time control of a manned space-craft (Kalman filter).
In practice, hedging has to be done discretely (as in Ch. IV). Or, we can
use price processes with jumps – finite variation, but now the markets are
incomplete.
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