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4. Diffusions.

A diffusion is a path-continuous strong-Markov process such that for each
time t and state x the following limits exist:

µ(t, x) := limh↓0
1

h
E[(Xt+h −Xt)|Xt = x],

σ2(t, x) := limh↓0
1

h
E[(Xt+h −Xt)

2|Xt = x].

Then µ(t, x) is called the drift, σ2(t, x) the diffusion coefficient.

§3. Brownian Motion.

The Scottish botanist Robert Brown observed pollen particles in suspen-
sion under a microscope in 1828 and 1829 (though others had observed the
phenomenon before him),1 and observed that they were in constant irregular
motion.

In 1900 L. Bachelier considered Brownian motion a possible model for
stock-market prices:
BACHELIER, L. (1900): Théorie de la spéculation. Ann. Sci. Ecole Nor-
male Supérieure 17, 21-86
– the first time Brownian motion had been used to model financial or eco-
nomic phenomena, and before a mathematical theory had been developed.

In 1905 Albert Einstein considered Brownian motion as a model of parti-
cles in suspension, and used it to estimate Avogadro’s number (N ∼ 6×1023),
based on the diffusion coefficient D in the Einstein relation

varXt = Dt (t > 0).

In 1923 Norbert WIENER defined and constructed Brownian motion rig-
orously for the first time. The resulting stochastic process is often called the
Wiener process in his honour, and its probability measure (on path-space) is
called Wiener measure.

We define standard Brownian motion on R, BM or BM(R), to be a
stochastic process X = (Xt)t≥0 such that

1The Roman author Lucretius observed this phenomenon in the gaseous phase – dust
particles dancing in sunbeams – in antiquity: De rerum naturae, c. 50 BC.
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1. X0 = 0,
2. X has independent increments: Xt+u−Xt is independent of σ(Xs : s ≤ t)
for u ≥ 0,
3. X has stationary increments: the law of Xt+u −Xt depends only on u,
4. X has Gaussian increments: Xt+u−Xt is normally distributed with mean
0 and variance u,

Xt+u −Xt ∼ N(0, u),

5. X has continuous paths: Xt is a continuous function of t, i.e. t 7→ Xt is
continuous in t.

For time t in a finite interval – [0, 1], say – we can use the following filtered
space:
Ω = C[0, 1], the space of all continuous functions on [0, 1].
The points ω ∈ Ω are thus random functions, and we use the coordinate
mappings: Xt, or Xt(ω), = ωt.
The filtration is given by Ft := σ(Xs : 0 ≤ s ≤ t), F := F1.
P is the measure on (Ω,F) with finite-dimensional distributions specified
by the restriction that the increments Xt+u −Xt are stationary independent
Gaussian N(0, u).

Theorem (WIENER, 1923). Brownian motion exists.

The best way to prove this is by construction, and one that reveals some
properties. The proof that follows is originally due to Paley, Wiener and
Zygmund (1933) and Lévy (1948), but is re-written in the modern language
of wavelet expansions. We omit details; for these, see e.g. [BK] 5.3.1, or
SP l20-22. The Haar system (Hn) = (Hn(.)) is a complete orthonormal
system (cons) of functions in L2[0, 1]. The Schauder System ∆n) is obtained
by integrating the Haar system. Consider the triangular function (or ‘tent
function’)

∆(t) =


2t on [0, 1

2
),

2(1− t) on [1
2
, 1],

0 else.

Write ∆0(t) := t, ∆1(t) := ∆(t), and define the nth Schauder function ∆n

by
∆n(t) := ∆(2jt− k) (n = 2j + k ≥ 1).
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Note that ∆n has support [k/2j, (k + 1)/2j] (so is ‘localized’ on this dyadic
interval, which is small for n, j large). We see that∫ t

0

H(u)du =
1

2
∆(t),

and similarly ∫ t

0

Hn(u)du = λn∆n(t),

where λ0 = 1 and for n ≥ 1,

λn =
1

2
× 2−j/2 (n = 2j + k ≥ 1).

The Schauder system (∆n) is again a complete orthogonal system on L2[0, 1].
We can now formulate the next result; for proof, see the references above.

Theorem (PWZ theorem: Paley-Wiener-Zygmund, 1933). For (Zn)
∞
0

independent N(0, 1) random variables, λn, ∆n as above,

Wt :=
∞∑
n=0

λnZn∆n(t)

converges uniformly on [0, 1], a.s. The process W = (Wt : t ∈ [0, 1]) is Brow-
nian motion.

Thus the above description does indeed define a stochastic process X =
(Xt)t∈[0,1] on (C[0, 1],F , (Ft), P ). The construction gives X on C[0, n] for
each n = 1, 2, · · ·, and combining these: X exists on C[0,∞). It is also
unique (a stochastic process is uniquely determined by its finite-dimensional
distributions and the restriction to path-continuity).

No construction of Brownian motion is easy: one needs both some work
and some knowledge of measure theory. However, existence is really all we
need, and this we shall take for granted. For background, see any measure-
theoretic text on stochastic processes. The classic is Doob’s book, quoted
above (see VIII.2 there). Excellent modern texts include Karatzas & Shreve
[KS] (see particularly §2.2-4 for construction and §5.8 for applications to eco-
nomics), Revuz & Yor [RY], Rogers & Williams [RW1] (Ch. 1), [RW2] Itô
calculus – below).
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We shall henceforth denote standard Brownian motion BM(R) – or just
BM for short – by B = (Bt) (B for Brown), though W = (Wt) (W for
Wiener) is also common. Standard Brownian motion BM(Rd) in d dimen-
sions is defined by B(t) := (B1(t), · · · , Bd(t)), where B1, · · · , Bd are inde-
pendent standard Brownian motions in one dimension (independent copies of
BM(R)).

Zeros.
It can be shown that Brownian motion oscillates:

lim supt→∞Xt = +∞, lim inft→∞Xt = −∞ a.s.

Hence, for every n there are zeros (times t with Xt = 0) of X with t ≥ n
(indeed, infinitely many such zeros). So if

Z := {t ≥ 0 : Xt = 0}

denotes the zero-set of BM(R):
1. Z is an infinite set.
Next, if tn are zeros and tn → t, then by path-continuity B(tn) → B(t); but
B(tn) = 0, so B(t) = 0:
2. Z is a closed set (Z contains its limit points).
Less obvious are the next two properties:
3. Z is a perfect set: every point t ∈ Z is a limit point of points in Z. So
there are infinitely many zeros in every neighbourhood of every zero (so the
paths must oscillate amazingly fast!).
4. Z is a (Lebesgue) null set: Z has Lebesgue measure zero.

In particular, the diagram above (or any other diagram!) grossly distorts
Z: it is impossible to draw a realistic picture of a Brownian path.

Brownian Scaling.
For each c ∈ (0,∞), X(c2t) is N(0, c2t), so Xc(t) := c−1X(c2t) is N(0, t).

Thus Xc has all the defining properties of a Brownian motion (check). So,
Xc IS a Brownian motion:

Theorem. If X is BM and c > 0, Xc(t) := c−1X(c2t), then Xc is again a
BM .
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