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Chapter V. STOCHASTIC PROCESSES IN CONTINUOUS TIME

§1. Filtrations; Finite-Dimensional Distributions

The underlying set-up is as before, but now time is continuous rather
than discrete; thus the time-variable will be t ≥ 0 in place of n = 0, 1, 2, . . ..
The information available at time t is the σ-field Ft; the collection of these as
t ≥ 0 varies is the filtration, modelling the information flow. The underlying
probability space, endowed with this filtration, gives us the stochastic basis
(filtered probability space) on which we work,

We assume that the filtration is complete (contains all subsets of null-sets
as null-sets), and right-continuous: Ft = Ft+, i.e.

Ft = ∩s>tFs

(the ‘usual conditions’ – right-continuity and completeness – in Meyer’s ter-
minology).

A stochastic process X = (Xt)t≥0 is a family of random variables defined
on a filtered probability space with Xt Ft-measurable for each t: thus Xt is
known when Ft is known, at time t.

If {t1, · · · , tn} is a finite set of time-points in [0,∞), (Xt1 , · · · , Xtn), or
(X(t1), · · · , X(tn)) (for typographical convenience, we use both notations in-
terchangeably, with or without ω: Xt(ω), or X(t, ω)) is a random n-vector,
with a distribution, µ(t1, · · · , tn) say. The class of all such distributions as
{t1, · · · , tn} ranges over all finite subsets of [0,∞) is called the class of all
finite-dimensional distributions of X. These satisfy certain obvious consis-
tency conditions:
(i) deletion of one point ti can be obtained by ‘integrating out the unwanted
variable’, as usual when passing from joint to marginal distributions,
(ii) permutation of the ti permutes the arguments of the measure µ(t1, · · · , tn)
on Rn.
Conversely, a collection of finite-dimensional distributions satisfying these
two consistency conditions arises from a stochastic process in this way (this
is the content of the DANIELL-KOLMOGOROV Theorem: P. J. Daniell in
1918, A. N. Kolmogorov in 1933).
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Important though it is as a general existence result, however, the Daniell-
Kolmogorov theorem does not take us very far. It gives a stochastic process
X as a random function on [0,∞), i.e. a random variable on R[0,∞). This
is a vast and unwieldy space; we shall usually be able to confine attention
to much smaller and more manageable spaces, of functions satisfying reg-
ularity conditions. The most important of these is continuity: we want to
be able to realise X = (Xt(ω))t≥0 as a random continuous function, i.e. a
member of C[0,∞); such a process X is called path-continuous (since the
map t → Xt(ω) is called the sample path, or simply path, given by ω) – or
more briefly, continuous. This is possible for the extremely important case of
Brownian motion (below), for example, and its relatives. Sometimes we need
to allow our random function Xt(ω) to have jumps. It is then customary,
and convenient, to require Xt to be right-continuous with left limits (rcll),
or càdlàg (continu à droite, limite à gauche) – i.e. to have X in the space
D[0,∞) of all such functions (the Skorohod space). This is the case, for in-
stance, for the Poisson process and its relatives.

General results on realisability – whether or not it is possible to realise,
or obtain, a process so as to have its paths in a particular function space –
are known, but it is usually better to construct the processes we need directly
on the function space on which they naturally live.

Given a stochastic process X, it is sometimes possible to improve the
regularity of its paths without changing its distribution (that is, without
changing its finite-dimensional distributions). For background on results of
this type (separability, measurability, versions, regularization, ...) see e.g.
Doob’s classic book [D].

The continuous-time theory is technically much harder than the discrete-
time theory, for two reasons:
(i) questions of path-regularity arise in continuous time but not in discrete
time,
(ii) uncountable operations (like taking sup over an interval) arise in contin-
uous time. But measure theory is constructed using countable operations:
uncountable operations risk losing measurability.

Filtrations and Insider Trading
Recall that a filtration models an information flow. In our context, this

is the information flow on the basis of which market participants – traders,
investors etc. – make their decisions, and commit their funds and effort.
All this is information in the public domain – necessarily, as stock exchange
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prices are publicly quoted.
Again necessarily, many people are involved in major business projects

and decisions (an important example: mergers and acquisitions, or M&A)
involving publicly quoted companies. Frequently, this involves price-sensitive
information. People in this position are – rightly – prohibited by law from
profiting by it directly, by trading on their own account, in publicly quoted
stocks but using private information. This is rightly regarded as theft at the
expense of the investing public.1 Instead, those involved in M&A etc. should
seek to benefit legitimately (and indirectly) – enhanced career prospects,
commission or fees, bonuses etc.

The regulatory authorities (Securities and Exchange Commission – SEC
– in US; Financial Conduct Authority (FCA) and Prudential Regulation Au-
thority (PRA, part of the Bank of England (BoE) in UK) monitor all trading
electronically. Their software alerts them to patterns of suspicious trades.
The software design (necessarily secret, in view of its value to criminals)
involves all the necessary elements of Mathematical Finance in exaggerated
form: economic and financial insight, plus: mathematics; statistics (espe-
cially pattern recognition, data mining and machine learning); numerics and
computation.

§2. Classes of Processes.

1. Martingales.
The martingale property in continuous time is just that suggested by the

discrete-time case:
E[Xt|Fs] = Xs (s < t),

and similarly for submartingales and supermartingales. There are regular-
ization results, under which one can take Xt right-continuous in t. Among
the contrasts with the discrete case, we mention that the Doob-Meyer de-
composition, easy in discrete time (III.8), is a deep result in continuous time.
For background, see e.g.
MEYER, P.-A. (1966): Probabilities and potentials. Blaisdell
- and subsequent work by Meyer and the French school (Dellacherie & Meyer,
Probabilités et potentiel, I-V, etc.
2. Gaussian Processes.

1The plot of the film Wall Street revolves round such a case, and is based on real life
– recommended!
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Recall the multivariate normal distribution N(µ,Σ) in n dimensions. If
µ ∈ Rn, Σ is a non-negative definite n×n matrix, X has distribution N(µ,Σ)
if it has characteristic function

ϕX(t) := E exp{itT .X} = exp{itT .µ− 1

2
tTΣt} (t ∈ Rn).

If further Σ is positive definite (so non-singular), X has density

fX(x) =
1

(2π)
1
2
n|Σ|

1
2

exp{−1

2
(x− µ)TΣ−1(x− µ)}

(Edgeworth’s Theorem of 1893: F. Y. Edgeworth (1845-1926), English statis-
tician).

A process X = (Xt)t≥0 is Gaussian if all its finite-dimensional distribu-
tions are Gaussian. Such a process can be specified by:
(i) a measurable function µ = µ(t) with EXt = µ(t),
(ii) a non-negative definite function σ(s, t) with

σ(s, t) = cov(Xs, Xt).

Gaussian processes have many interesting properties. Among these, we
quote Belayev’s dichotomy: with probability one, the paths of a Gaussian
process are either continuous, or extremely pathological: for example, un-
bounded above and below on any time-interval, however short. Naturally,
we shall confine attention in this course to continuous Gaussian processes.

3. Markov Processes.
X is Markov if for each t, each A ∈ σ(Xs : s > t) (the ‘future’) and

B ∈ σ(Xs : s < t) (the ‘past’),

P (A|Xt, B) = P (A|Xt).

That is, if you know where you are (at time t), how you got there doesn’t
matter so far as predicting the future is concerned – equivalently, past and
future are conditionally independent given the present.

The same definition applied to Markov processes in discrete time.
X is said to be strong Markov if the above holds with the fixed time t

replaced by a stopping time T (a random variable). This is a real restric-
tion of the Markov property in continuous time (though not in discrete time).
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