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Proof (continued).
This is the characteristic function of the normal law N(µ, σ2). The result fol-
lows, since convergence of CFs implies convergence in distribution by Lévy’s
continuity theorem for CFs ([W], §18.1). //

We can apply this to pricing the call option above:

C
(N)
0 = (1 +

RT

N
)−NE∗[(S0Π

N
1 Tn −K)+]

= E∗[(S0 exp{YN} − (1 +
RT

N
)−NK)+], (1)

where

YN :=
∑N

1
log(Tn/(1 + r)).

Since Tn = TN
n above takes values 1 + b, 1 + a, XN

n := log(TN
n /(1 + r)) takes

values log((1 + b)/(1 + r)), log((1 + a)/(1 + r)) = ±σ/
√
N (so has second

moment σ2/N). Its mean is

µN := log
(1 + b

1 + r

)
(1−p∗)+log

(1 + a

1 + r

)
p∗ =

σ√
N
(1−p∗)− σ√

N
p∗ = (1−2p∗)σ/

√
N

(we shall see below that 1 − 2p∗ = O(1/
√
N), so the Lemma will apply).

Now (recall r = RT/N = O(1/N))

a = (1 + r)e−σ/
√
N − 1, b = (1 + r)eσ/

√
N − 1,

so a, b, r → 0 as N → ∞, and

1− 2p∗ = 1− 2
(b− r)

(b− a)
= 1− 2

[(1 + r)eσ/
√
N − 1− r]

[(1 + r)(eσ/
√
N − e−σ/

√
N)]

= 1− 2
[eσ/

√
N − 1]

[eσ/
√
N − e−σ/

√
N ]

.

Now expand the two [· · ·] terms above by Taylor’s theorem: they give

σ√
N
(1 +

1

2

σ√
N

+ · · ·), 2σ√
N
(1 +

σ2

6N
+ · · ·).
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So, cancelling σ/
√
N ,

1− 2p∗ = 1−
2(1 + 1

2
σ√
N
+ · · ·)

2(1 + σ2

6N
+ · · ·)

= −1

2

σ√
N

+O(1/N) :

NµN = N.
σ√
N
.(−1

2

σ√
N

+O(1/N)) → µ := −1

2
σ2 (N → ∞).

We are thus in the situation of the Lemma, with µ = −1
2
σ2. In (1), we

have YN → Y in distribution and (1 + RT
N
)−N → e−RT as N → ∞. This

suggests that
C

(N)
0 → E[(S0e

Y − e−RTK)+],

where E is the expectation for the distribution of Y , which is N(−1
2
σ2, σ2).

This can be justified, by standard properties of convergence in distribution
(see e.g. [W]). So if Z := (Y + 1

2
σ2)/σ, Z ∼ N(0, 1), Y = −1

2
σ2 + σZ, and

C
(N)
0 →

∫ ∞

−∞
[S0 exp{−

1

2
σ2 + σx} − e−RTK]+

e−
1
2
x2

√
2π

dx (N → ∞).

To evaluate the integral, note first that [...] > 0 where

S0 exp{−
1

2
σ2 + σx} > e−RTK, −1

2
σ2 + σx > log(K/S0)−RT :

x > [log(K/S0) +
1

2
σ2 −RT ]/σ = c, say.

So writing Φ(x) for the standard normal distribution function,

C0 = S0

∫ ∞

c

e−
1
2
σ2

. exp{−1

2
x2 + σx}dx/

√
2π −Ke−RT [1− Φ(c)].

The remaining integral is∫ ∞

c

exp{−1

2
(x− σ)2}dx/

√
2π =

∫ ∞

c−σ

exp{−1

2
u2}du/

√
2π = 1− Φ(c− σ).

So the option price is given as a function of the initial price S0, strike price
K, expiry T , interest rate R and variance σ2 by

C0 = S0[1−Φ(c−σ)]−Ke−RT [1−Φ(c)], c = [log(K/S0)+
1

2
σ2−RT ]/σ.
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To compare with our later work, it is convenient now to replace σ2 by
σ2T ; thus σ2 is now the variance per unit time. Its square root, σ, is called
the volatility of the stock. Then c− σ, c above become c±, where

c± := [log(K/S0)− (R± 1

2
σ2)T ]/σ

√
T .

The result extends immediately to give the price of the option at time t ∈
(0, T ), by replacing T by T − t, S0 by St.

We re-write the formula in more customary notation. First, write r in
place of R for the interest rate. Next, using the symmetry of the normal
distribution, 1− Φ(c±) = Φ(−c±) = Φ(d±), say, where

d± := −c± = [log(S/K) + (r ± 1

2
σ2)(T − t)]/σ

√
T − t :

the price of the European call option is

ct = StΦ(d+)− e−r(T−t)KΦ(d−).

This is the famous continuous Black-Scholes formula. We shall return to it
in Chapter VI, where we re-derive it by continuous-time methods (Brownian
motion and Itô calculus).
Note. 1. The same argument (or put-call parity) gives the value of the Eu-
ropean put option as pt = Ke−r(T−t)Φ(−d−)− StΦ(−d+).
2. The proof above starts from a binomial distribution and ends with a nor-
mal distribution. The binomial distribution is that of a sum of independent
Bernoulli random variables. That sums (equivalently, averages) of indepen-
dent random variables with finite means and variances gives a normal limit
is the content of the Central Limit Theorem or CLT (the Law of Errors, as
physicists would say). The particular form of the CLT used here – normal
approximation to the binomial – is the de Moivre-Laplace limit theorem.

The picture for this is familiar. The Binomial distribution B(n, p) has a
histogram with n+ 1 bars, whose heights peak at the mode and decrease to
either side. For large n, one can draw a smooth curve through the histogram.
The curve looks like a normal density curve (with the appropriate location
and scale, i.e. mean and variance). The result proved above, and the classical
de Moivre-Laplace limit theorem, say that this is exactly right.
3. The Cox-Ross-Rubinstein binomial model above goes over in the passage
to the limit to the geometric Brownian motion model of VI.1. We will later
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re-derive the continuous Black-Scholes formula in Ch. VI, using continuous-
time methods (Itô calculus), rather than using the method above of deriving
the discrete Black-Scholes formula and going to the limit on the formula,
rather than the model.
4. For similar derivations of the discrete Black-Scholes formula and the pas-
sage to the limit to the continuous Black-Scholes formula, see e.g. [CR], §5.6.
5. One of the most striking features of the Black-Scholes formula is that it
does not involve the mean rate of return µ of the stock - only the riskless
interest-rate r and the volatility of the stock σ. Mathematically, this reflects
the fact that the change of measure involved in the passage to the risk-neutral
measure involves a change of drift. This eliminates the µ term; see Ch. VI.
6. The Black-Scholes formula involves the parameter σ (where σ2 is the vari-
ance of the stock per unit time), called the volatility of the stock. In financial
terms, this represents how sensitive the stock-price is to new information –
how ‘volatile’ the market’s assessment of the stock is. This volatility param-
eter is very important, but we do not know it; instead, we have to estimate
the volatility for ourselves. There are two approaches:
(a) historic volatility: here we use Time Series methods to estimate σ from
past price data. Clearly the more variability we observe in runs of past prices,
the more volatile the stock price is, and given enough data we can estimate
σ in this way.
(b) implied volatility: match observed option prices to theoretical option
prices. For, the price we see options traded at tells us what the market
thinks the volatility is (estimating volatility this way works because the de-
pendence is monotone; see later).

If the Black-Scholes model were perfect, these two estimates would agree
(to within sampling error). But discrepancies can be observed, which shows
the imperfections of our model.

Volatility estimation is a major topic, both theoretically and in practice.
We return to this in IV.7.3-4 below and VI.7.5-8. But looking ahead:
(i) trading is itself one of the major causes of volatility;
(ii) options like volatility [i.e., option prices go up with volatility].
Recalling Ch. I, this shows that volatility is a ‘bad thing’ from the point of
view of the real economy (uncertainty about, e.g., future material costs is
nothing but a nuisance to manufacturers), but a ‘good thing’ for financial
markets (trading increases volatility, which increases option prices, which
generates more trade ...) – at the cost of increased instability.
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