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We note that, to calculate prices as above, we need to know only

(i) , the set of all possible states,

(ii) the o-field F and the filtration (or information flow) (F,),

(iii) the EMM P* (or Q).

We do NOT need to know the underlying probability measure P — only its
null sets, to know what ‘equivalent to P’ means (actually, in this model, only
the empty set is null).

Now option pricing is our central task, and for pricing purposes P* is
vital and P itself irrelevant. We thus may — and shall — focus attention on
P*, which is called the risk-neutral probability measure. Risk-neutrality is
the central concept of the subject. The concept of risk-neutrality is due in
its modern form to Harrison and Pliska [HP] in 1981 — though the idea can
be traced back to actuarial practice much earlier. Harrison and Pliska call
P* the reference measure; other names are risk-adjusted or martingale mea-
sure. The term ‘risk-neutral’ reflects the P*-martingale property of the risky
assets, since martingales model fair games.

To summarise, we have the

Theorem (Risk-Neutral Pricing Formula). In a complete viable market,
arbitrage-free prices of assets are their discounted expected values under the
risk-neutral (equivalent martingale) measure P* (or (). With payoff h,

Vo(H) = (14 7)) V""E VN (H)|F) = (1 +7) V" E*[h|F,].

85. European Options. The Discrete Black-Scholes Formula.

We consider the simplest case, the Cox-Ross-Rubinstein binomial model
of 1979; see [CR], [BK]. We take d = 1 for simplicity (one risky asset, one
riskless asset or bank account); the price vector is (52, S!), or ((1+7)",S,),

where
g Sp(1+a)  with probability p,
TS, (14-b)  with probability 1 — p

with —1 < a < b, Sy > 0. So writing N for the expiry time,

Q={l+a,1+b}",



each w €  representing the successive values of T,,41 = Sp11/S0, n =
0,1,-++, N — 1. The filtration is Fo = {0, Q} (trivial o-field), Fr = F = 29
(power-set of 2: class of all subsets of ), F,, = o(S1,---,S,) = o(Th, -, Ty).
For w = (wy, -, wy) € Q, P{wy,  -,wny}) = P(TY = wy, -+, Tn = wy),
so knowing the probability measure P (equivalently, knowing p) means we
know the distribution of (77, ---,Ty).
For p* € (0,1) to be determined, let P* correspond to p* as P does to p.

Then the discounted price (S,,) is a P*-martingale iff

E*[Sun|Fal = Suy E*[(Snsa/Sn)|Fal = 1,

E* T, Fa)=1+r (n=0,1,---,N — 1),
since S,, = gn(l + 1), Thi1 = Spe1/Sn = (5n+1/5'n)(1 + 7). But

E*(Th|Fn) =1 +a)p"+ (1+0b).(1—p")

is a weighted average of 14 a and 1+ b; this can be 1 4 r iff r € [a,b]. As

P* is to be equivalent to P and P has no non-empty null-sets, » = a, b are
excluded. Thus by §2:

Lemma. The market is viable (arbitrage-free) iff r € (a,b).
Next, 14+r = (14+a)p*+(1+b)(1—p*), r = ap*+b(1—p*): r—b = p*(a—0):

Lemma. The equivalent martingale measure exists, is unique, and is given
by

pr=(b-r)/(b—a)
Corollary. The market is complete.

Now Sy = SnHﬁ/ 1 1;. By the Fundamental Theorem of Asset Pricing,
the price C,, of a call option with strike-price K at time n is

Co = (147) VE[(Sy — K){|F)
= (1 + T)_(N_R)E*[(Snnrjy+1ﬂ - K)+|]:n]

Now the conditioning on F,, has no effect — on 5, as this is F,,-measurable
(known at time n), and on the 7; as these are independent of F,,. So

Co = (L+7) VB8, T, - K),]

N —n < . . ,
= (1+ T)_(N_")Ej-v_o”( j )p’”(l =) IS (14 a) (L +0)V T = Ky
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here 5, N —n — j are the numbers of times 7; takes the two possible values
1+ a,1 4+ 0b. This is the discrete Black-Scholes formula of Cox, Ross &
Rubinstein (1979) for pricing a European call option in the binomial model.
The European put is similar — or use put-call parity (I.3).

To find the (perfect-hedge) strategy for replicating this explicitly: write

c(n,x) = " (N; ”)p*ju — PV af (L4 BN - K)

Then ¢(n, x) is the undiscounted P*-expectation of the call at time n given
that S,, = x. This must be the value of the portfolio at time n if the strategy
H = (H,) replicates the claim:

HY(1+7)"+ H,S, = c(n,S,)

(here by previsibility H? and H,, are both functions of Sy, --,S,_; only).
Now S, = S,-1T, = Sp—1(1 +a) or S,,_1(1 +b), so:

HY(1+7r)"+H,S, 1(1+a) = c(n,Sy_1(1+a))
HY(1+7)"+ H,S, 1(14+0) = c(n,Sp_1(1+0)).

Subtract:
H,Sp-1(b—a)=c(n,S,—1(1+0b)) — c(n, Sp—1(1 + a)).

So H,, in fact depends only on S,,_1, H, = H,(S,—1) (by previsibility), and

Proposition. The perfect hedging strategy H, replicating the European
call option above is given by
c(n, Sp—1(14+0)) — c(n, Sp—1(1 + a))

H, = H,(Sy_1) = AT .

Notice that the numerator is the difference of two values of ¢(n,z) with
the larger value of x in the first term (recall b > a). When the payoff function
¢(n, ) is an increasing function of z, as for the European call option consid-
ered here, this is non-negative. In this case, the Proposition gives H,, > 0:
the replicating strategy does not involve short-selling. We record this as:

Corollary. When the payoff function is a non-decreasing function of the
final asset price Sy, the perfect-hedging strategy replicating the claim does
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not involve short-selling of the risky asset.

8§6. Continuous-Time Limit of the Binomial Model.

Suppose now that we wish to price an option in continuous time with
initial stock price Sy, strike price K and expiry 7. We can use the work
above to give a discrete-time approximation, where N — oo. Given R > 0,
the instantaneous interest rate in continuous time, define r by

r:= RT/N : e = limpy o0 (1 + %)N = limpy oo (1 4+ 7)".
Here r, which tends to zero as N — oo, represents the interest rate in dis-
crete time for the approximating binomial model.
For ¢ > 0 fixed (¢? is to be a variance in continuous time, which will corre-
spond to the wvolatility of the stock), define a,b by

log((1+a)/(1+7) =—0/VN,  log((1+b)/(1+7))=0/VN

(a,b both go to zero as N — o). We now have a sequence of binomial
models, for each of which we can price options as in §5. We shall show that
the pricing formula converges as N — oo to a limit (we identify this later
with the continuous Black-Scholes formula of Ch. VI); see e.g. [BK], 4.6.2.

Lemma. Let (XV), be iid with mean py satisfying

Nuy — 1 (N — )

and variance 0°(1 4 0(1))/N. If Yy := ¥ X", then Yy converges in distri-
bution to normality:

Yy 5 Y =N o?) (N — o).

Proof. Use characteristic functions: since Yy has mean puy = (14 o(1))/N
and variance as given, it also has second moment o(1 + o(1))/N. So it has
characteristic function (CF)

on(u) == Eexp{iuYyn} = IIY Eexp{iuX]'} = [Eexp{iuX{ }]"

1 0%u? 1 1
50]\? + O(N))N — exp{iup — 502u2} (N — ).
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