m3a22l17tex
Lecture 17 18.10.2014
We note that, to calculate prices as above, we need to know only
(i) Ω, the set of all possible states,
(ii) the σ-field \mathcal{F} and the filtration (or information flow) $\left(\mathcal{F}_{n}\right)$,
(iii) the EMM P^{*} (or Q).

We do NOT need to know the underlying probability measure P - only its null sets, to know what 'equivalent to P ' means (actually, in this model, only the empty set is null).

Now option pricing is our central task, and for pricing purposes P^{*} is vital and P itself irrelevant. We thus may - and shall - focus attention on P^{*}, which is called the risk-neutral probability measure. Risk-neutrality is the central concept of the subject. The concept of risk-neutrality is due in its modern form to Harrison and Pliska [HP] in 1981 - though the idea can be traced back to actuarial practice much earlier. Harrison and Pliska call P^{*} the reference measure; other names are risk-adjusted or martingale measure. The term 'risk-neutral' reflects the P^{*}-martingale property of the risky assets, since martingales model fair games.

To summarise, we have the
Theorem (Risk-Neutral Pricing Formula). In a complete viable market, arbitrage-free prices of assets are their discounted expected values under the risk-neutral (equivalent martingale) measure P^{*} (or Q). With payoff h,

$$
V_{n}(H)=(1+r)^{-(N-n)} E^{*}\left[V_{N}(H) \mid \mathcal{F}_{n}\right]=(1+r)^{-(N-n)} E^{*}\left[h \mid \mathcal{F}_{n}\right] .
$$

§5. European Options. The Discrete Black-Scholes Formula.

We consider the simplest case, the Cox-Ross-Rubinstein binomial model of 1979; see [CR], [BK]. We take $d=1$ for simplicity (one risky asset, one riskless asset or bank account); the price vector is $\left(S_{n}^{0}, S_{n}^{1}\right)$, or $\left((1+r)^{n}, S_{n}\right)$, where

$$
S_{n+1}=\left\{\begin{array}{cc}
S_{n}(1+a) & \text { with probability } p, \\
S_{n}(1+b) & \text { with probability } 1-p
\end{array}\right.
$$

with $-1<a<b, S_{0}>0$. So writing N for the expiry time,

$$
\Omega=\{1+a, 1+b\}^{N},
$$

each $\omega \in \Omega$ representing the successive values of $T_{n+1}:=S_{n+1} / S_{n}, n=$ $0,1, \cdots, N-1$. The filtration is $\mathcal{F}_{0}=\{\emptyset, \Omega\}$ (trivial σ-field), $\mathcal{F}_{T}=\mathcal{F}=2^{\Omega}$ (power-set of Ω : class of all subsets of Ω), $\mathcal{F}_{n}=\sigma\left(S_{1}, \cdots, S_{n}\right)=\sigma\left(T_{1}, \cdots, T_{n}\right)$. For $\omega=\left(\omega_{1}, \cdots, \omega_{N}\right) \in \Omega, P\left(\left\{\omega_{1}, \cdots, \omega_{N}\right\}\right)=P\left(T_{1}=\omega_{1}, \cdots, T_{N}=\omega_{N}\right)$, so knowing the probability measure P (equivalently, knowing p) means we know the distribution of $\left(T_{1}, \cdots, T_{N}\right)$.

For $p^{*} \in(0,1)$ to be determined, let P^{*} correspond to p^{*} as P does to p. Then the discounted price $\left(\tilde{S}_{n}\right)$ is a P^{*}-martingale iff

$$
\begin{aligned}
& E^{*}\left[\tilde{S}_{n+1} \mid \mathcal{F}_{n}\right]=\tilde{S}_{n}, \quad E^{*}\left[\left(\tilde{S}_{n+1} / \tilde{S}_{n}\right) \mid \mathcal{F}_{n}\right]=1, \\
& E^{*}\left[T_{n+1} \mid \mathcal{F}_{n}\right]=1+r \quad(n=0,1, \cdots, N-1),
\end{aligned}
$$

since $S_{n}=\tilde{S}_{n}(1+r)^{n}, T_{n+1}=S_{n+1} / S_{n}=\left(\tilde{S}_{n+1} / \tilde{S}_{n}\right)(1+r)$. But

$$
E^{*}\left(T_{n+1} \mid \mathcal{F}_{n}\right)=(1+a) \cdot p^{*}+(1+b) \cdot\left(1-p^{*}\right)
$$

is a weighted average of $1+a$ and $1+b$; this can be $1+r$ iff $r \in[a, b]$. As P^{*} is to be equivalent to P and P has no non-empty null-sets, $r=a, b$ are excluded. Thus by $\S 2$:

Lemma. The market is viable (arbitrage-free) iff $r \in(a, b)$.
Next, $1+r=(1+a) p^{*}+(1+b)\left(1-p^{*}\right), r=a p^{*}+b\left(1-p^{*}\right): r-b=p^{*}(a-b)$:
Lemma. The equivalent martingale measure exists, is unique, and is given by

$$
p^{*}=(b-r) /(b-a) .
$$

Corollary. The market is complete.
Now $S_{N}=S_{n} \Pi_{n+1}^{N} T_{i}$. By the Fundamental Theorem of Asset Pricing, the price C_{n} of a call option with strike-price K at time n is

$$
\begin{aligned}
C_{n} & =(1+r)^{-(N-n)} E^{*}\left[\left(S_{N}-K\right)_{+} \mid \mathcal{F}_{n}\right] \\
& =(1+r)^{-(N-n)} E^{*}\left[\left(S_{n} \Pi_{n+1}^{N} T_{i}-K\right)_{+} \mid \mathcal{F}_{n}\right]
\end{aligned}
$$

Now the conditioning on \mathcal{F}_{n} has no effect - on S_{n} as this is \mathcal{F}_{n}-measurable (known at time n), and on the T_{i} as these are independent of \mathcal{F}_{n}. So

$$
\begin{aligned}
C_{n} & =(1+r)^{-(N-n)} E^{*}\left[\left(S_{n} \Pi_{n+1}^{N} T_{i}-K\right)_{+}\right] \\
& =(1+r)^{-(N-n)} \sum_{j=0}^{N-n}\binom{N-n}{j} p^{* j}\left(1-p^{*}\right)^{N-n-j}\left(S_{n}(1+a)^{j}(1+b)^{N-n-j}-K\right)_{+} ;
\end{aligned}
$$

here $j, N-n-j$ are the numbers of times T_{i} takes the two possible values $1+a, 1+b$. This is the discrete Black-Scholes formula of Cox, Ross \& Rubinstein (1979) for pricing a European call option in the binomial model. The European put is similar - or use put-call parity (I.3).

To find the (perfect-hedge) strategy for replicating this explicitly: write

$$
c(n, x):=\sum_{j=0}^{N-n}\binom{N-n}{j} p^{* j}\left(1-p^{*}\right)^{N-n-j}\left(x(1+a)^{j}(1+b)^{N-n-j}-K\right)_{+} .
$$

Then $c(n, x)$ is the undiscounted P^{*}-expectation of the call at time n given that $S_{n}=x$. This must be the value of the portfolio at time n if the strategy $H=\left(H_{n}\right)$ replicates the claim:

$$
H_{n}^{0}(1+r)^{n}+H_{n} S_{n}=c\left(n, S_{n}\right)
$$

(here by previsibility H_{n}^{0} and H_{n} are both functions of S_{0}, \cdots, S_{n-1} only). Now $S_{n}=S_{n-1} T_{n}=S_{n-1}(1+a)$ or $S_{n-1}(1+b)$, so:

$$
\begin{aligned}
H_{n}^{0}(1+r)^{n}+H_{n} S_{n-1}(1+a) & =c\left(n, S_{n-1}(1+a)\right) \\
H_{n}^{0}(1+r)^{n}+H_{n} S_{n-1}(1+b) & =c\left(n, S_{n-1}(1+b)\right)
\end{aligned}
$$

Subtract:

$$
H_{n} S_{n-1}(b-a)=c\left(n, S_{n-1}(1+b)\right)-c\left(n, S_{n-1}(1+a)\right)
$$

So H_{n} in fact depends only on $S_{n-1}, H_{n}=H_{n}\left(S_{n-1}\right)$ (by previsibility), and
Proposition. The perfect hedging strategy H_{n} replicating the European call option above is given by

$$
H_{n}=H_{n}\left(S_{n-1}\right)=\frac{c\left(n, S_{n-1}(1+b)\right)-c\left(n, S_{n-1}(1+a)\right)}{S_{n-1}(b-a)}
$$

Notice that the numerator is the difference of two values of $c(n, x)$ with the larger value of x in the first term (recall $b>a$). When the payoff function $c(n, x)$ is an increasing function of x, as for the European call option considered here, this is non-negative. In this case, the Proposition gives $H_{n} \geq 0$: the replicating strategy does not involve short-selling. We record this as:

Corollary. When the payoff function is a non-decreasing function of the final asset price S_{N}, the perfect-hedging strategy replicating the claim does
not involve short-selling of the risky asset.

§6. Continuous-Time Limit of the Binomial Model.

Suppose now that we wish to price an option in continuous time with initial stock price S_{0}, strike price K and expiry T. We can use the work above to give a discrete-time approximation, where $N \rightarrow \infty$. Given $R \geq 0$, the instantaneous interest rate in continuous time, define r by

$$
r:=R T / N: \quad e^{R T}=\lim _{N \rightarrow \infty}\left(1+\frac{R T}{N}\right)^{N}=\lim _{N \rightarrow \infty}(1+r)^{N}
$$

Here r, which tends to zero as $N \rightarrow \infty$, represents the interest rate in discrete time for the approximating binomial model.
For $\sigma>0$ fixed (σ^{2} is to be a variance in continuous time, which will correspond to the volatility of the stock), define a, b by

$$
\log ((1+a) /(1+r))=-\sigma / \sqrt{N}, \quad \log ((1+b) /(1+r))=\sigma / \sqrt{N}
$$

(a, b both go to zero as $N \rightarrow \infty$). We now have a sequence of binomial models, for each of which we can price options as in $\S 5$. We shall show that the pricing formula converges as $N \rightarrow \infty$ to a limit (we identify this later with the continuous Black-Scholes formula of Ch. VI); see e.g. [BK], 4.6.2.

Lemma. Let $\left(X_{j}^{N}\right)_{j=1}^{N}$ be iid with mean μ_{N} satisfying

$$
N \mu_{N} \rightarrow \mu \quad(N \rightarrow \infty)
$$

and variance $\sigma^{2}(1+o(1)) / N$. If $Y_{N}:=\Sigma_{1}^{N} X_{j}^{N}$, then Y_{N} converges in distribution to normality:

$$
Y_{N} \rightarrow Y=N\left(\mu, \sigma^{2}\right) \quad(N \rightarrow \infty) .
$$

Proof. Use characteristic functions: since Y_{N} has mean $\mu_{N}=\mu(1+o(1)) / N$ and variance as given, it also has second moment $\sigma^{2}(1+o(1)) / N$. So it has characteristic function (CF)

$$
\begin{gathered}
\phi_{N}(u):=E \exp \left\{i u Y_{N}\right\}=\Pi_{1}^{N} E \exp \left\{i u X_{j}^{N}\right\}=\left[E \exp \left\{i u X_{1}^{N}\right\}\right]^{N} \\
=\left(1+\frac{i u \mu}{N}-\frac{1}{2} \frac{\sigma^{2} u^{2}}{N}+o\left(\frac{1}{N}\right)\right)^{N} \rightarrow \exp \left\{i u \mu-\frac{1}{2} \sigma^{2} u^{2}\right\} \quad(N \rightarrow \infty) .
\end{gathered}
$$

