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We note that, to calculate prices as above, we need to know only
(i) Ω, the set of all possible states,
(ii) the σ-field F and the filtration (or information flow) (Fn),
(iii) the EMM P ∗ (or Q).
We do NOT need to know the underlying probability measure P – only its
null sets, to know what ‘equivalent to P ’ means (actually, in this model, only
the empty set is null).

Now option pricing is our central task, and for pricing purposes P ∗ is
vital and P itself irrelevant. We thus may – and shall – focus attention on
P ∗, which is called the risk-neutral probability measure. Risk-neutrality is
the central concept of the subject. The concept of risk-neutrality is due in
its modern form to Harrison and Pliska [HP] in 1981 – though the idea can
be traced back to actuarial practice much earlier. Harrison and Pliska call
P ∗ the reference measure; other names are risk-adjusted or martingale mea-
sure. The term ‘risk-neutral’ reflects the P ∗-martingale property of the risky
assets, since martingales model fair games.

To summarise, we have the

Theorem (Risk-Neutral Pricing Formula). In a complete viable market,
arbitrage-free prices of assets are their discounted expected values under the
risk-neutral (equivalent martingale) measure P ∗ (or Q). With payoff h,

Vn(H) = (1 + r)−(N−n)E∗[VN(H)|Fn] = (1 + r)−(N−n)E∗[h|Fn].

§5. European Options. The Discrete Black-Scholes Formula.
We consider the simplest case, the Cox-Ross-Rubinstein binomial model

of 1979; see [CR], [BK]. We take d = 1 for simplicity (one risky asset, one
riskless asset or bank account); the price vector is (S0

n, S
1
n), or ((1 + r)n, Sn),

where

Sn+1 =

{
Sn(1 + a) with probability p,
Sn(1 + b) with probability 1− p

with −1 < a < b, S0 > 0. So writing N for the expiry time,

Ω = {1 + a, 1 + b}N ,

1



each ω ∈ Ω representing the successive values of Tn+1 := Sn+1/Sn, n =
0, 1, · · · , N − 1. The filtration is F0 = {∅,Ω} (trivial σ-field), FT = F = 2Ω

(power-set of Ω: class of all subsets of Ω), Fn = σ(S1, · · · , Sn) = σ(T1, · · · , Tn).
For ω = (ω1, · · · , ωN) ∈ Ω, P ({ω1, · · · , ωN}) = P (T1 = ω1, · · · , TN = ωN),
so knowing the probability measure P (equivalently, knowing p) means we
know the distribution of (T1, · · · , TN).

For p∗ ∈ (0, 1) to be determined, let P ∗ correspond to p∗ as P does to p.
Then the discounted price (S̃n) is a P ∗-martingale iff

E∗[S̃n+1|Fn] = S̃n, E∗[(S̃n+1/S̃n)|Fn] = 1,

E∗[Tn+1|Fn] = 1 + r (n = 0, 1, · · · , N − 1),

since Sn = S̃n(1 + r)n, Tn+1 = Sn+1/Sn = (S̃n+1/S̃n)(1 + r). But

E∗(Tn+1|Fn) = (1 + a).p∗ + (1 + b).(1− p∗)

is a weighted average of 1 + a and 1 + b; this can be 1 + r iff r ∈ [a, b]. As
P ∗ is to be equivalent to P and P has no non-empty null-sets, r = a, b are
excluded. Thus by §2:

Lemma. The market is viable (arbitrage-free) iff r ∈ (a, b).

Next, 1+r = (1+a)p∗+(1+b)(1−p∗), r = ap∗+b(1−p∗): r−b = p∗(a−b):

Lemma. The equivalent martingale measure exists, is unique, and is given
by

p∗ = (b− r)/(b− a).

Corollary. The market is complete.

Now SN = SnΠ
N
n+1Ti. By the Fundamental Theorem of Asset Pricing,

the price Cn of a call option with strike-price K at time n is

Cn = (1 + r)−(N−n)E∗[(SN −K)+|Fn]

= (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+|Fn].

Now the conditioning on Fn has no effect – on Sn as this is Fn-measurable
(known at time n), and on the Ti as these are independent of Fn. So

Cn = (1 + r)−(N−n)E∗[(SnΠ
N
n+1Ti −K)+]

= (1 + r)−(N−n)ΣN−n
j=0

(
N − n

j

)
p∗j(1− p∗)N−n−j(Sn(1 + a)j(1 + b)N−n−j −K)+;
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here j, N − n− j are the numbers of times Ti takes the two possible values
1 + a, 1 + b. This is the discrete Black-Scholes formula of Cox, Ross &
Rubinstein (1979) for pricing a European call option in the binomial model.
The European put is similar – or use put-call parity (I.3).

To find the (perfect-hedge) strategy for replicating this explicitly: write

c(n, x) := ΣN−n
j=0

(
N − n

j

)
p∗j(1− p∗)N−n−j(x(1 + a)j(1 + b)N−n−j −K)+.

Then c(n, x) is the undiscounted P ∗-expectation of the call at time n given
that Sn = x. This must be the value of the portfolio at time n if the strategy
H = (Hn) replicates the claim:

H0
n(1 + r)n +HnSn = c(n, Sn)

(here by previsibility H0
n and Hn are both functions of S0, · · · , Sn−1 only).

Now Sn = Sn−1Tn = Sn−1(1 + a) or Sn−1(1 + b), so:

H0
n(1 + r)n +HnSn−1(1 + a) = c(n, Sn−1(1 + a))

H0
n(1 + r)n +HnSn−1(1 + b) = c(n, Sn−1(1 + b)).

Subtract:

HnSn−1(b− a) = c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a)).

So Hn in fact depends only on Sn−1, Hn = Hn(Sn−1) (by previsibility), and

Proposition. The perfect hedging strategy Hn replicating the European
call option above is given by

Hn = Hn(Sn−1) =
c(n, Sn−1(1 + b))− c(n, Sn−1(1 + a))

Sn−1(b− a)
.

Notice that the numerator is the difference of two values of c(n, x) with
the larger value of x in the first term (recall b > a). When the payoff function
c(n, x) is an increasing function of x, as for the European call option consid-
ered here, this is non-negative. In this case, the Proposition gives Hn ≥ 0:
the replicating strategy does not involve short-selling. We record this as:

Corollary. When the payoff function is a non-decreasing function of the
final asset price SN , the perfect-hedging strategy replicating the claim does
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not involve short-selling of the risky asset.

§6. Continuous-Time Limit of the Binomial Model.
Suppose now that we wish to price an option in continuous time with

initial stock price S0, strike price K and expiry T . We can use the work
above to give a discrete-time approximation, where N → ∞. Given R ≥ 0,
the instantaneous interest rate in continuous time, define r by

r := RT/N : eRT = limN→∞(1 +
RT

N
)N = limN→∞(1 + r)N .

Here r, which tends to zero as N → ∞, represents the interest rate in dis-
crete time for the approximating binomial model.
For σ > 0 fixed (σ2 is to be a variance in continuous time, which will corre-
spond to the volatility of the stock), define a, b by

log((1 + a)/(1 + r)) = −σ/
√
N, log((1 + b)/(1 + r)) = σ/

√
N

(a, b both go to zero as N → ∞). We now have a sequence of binomial
models, for each of which we can price options as in §5. We shall show that
the pricing formula converges as N → ∞ to a limit (we identify this later
with the continuous Black-Scholes formula of Ch. VI); see e.g. [BK], 4.6.2.

Lemma. Let (XN
j )Nj=1 be iid with mean µN satisfying

NµN → µ (N → ∞)

and variance σ2(1 + o(1))/N . If YN := ΣN
1 X

N
j , then YN converges in distri-

bution to normality:

YN → Y = N(µ, σ2) (N → ∞).

Proof. Use characteristic functions: since YN has mean µN = µ(1 + o(1))/N
and variance as given, it also has second moment σ2(1 + o(1))/N . So it has
characteristic function (CF)

ϕN(u) := E exp{iuYN} = ΠN
1 E exp{iuXN

j } = [E exp{iuXN
1 }]N

= (1 +
iuµ

N
− 1

2

σ2u2

N
+ o(

1

N
))N → exp{iuµ− 1

2
σ2u2} (N → ∞).
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