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§8. Doob Decomposition.
Theorem. Let X = (Xn) be an adapted process with each Xn ∈ L1. Then
X has an (essentially unique) Doob decomposition

X = X0 +M + A : Xn = X0 +Mn + An ∀n (D)

with M a martingale null at zero, A a previsible process null at zero. If also
X is a submartingale (‘increasing on average’), A is increasing: An ≤ An+1

for all n, a.s.

Proof. If X has a Doob decomposition (D),

E[Xn −Xn−1|Fn−1] = E[Mn −Mn−1|Fn−1] + E[An − An−1|Fn−1].

The first term on the right is zero, as M is a martingale. The second is
An − An−1, since An (and An−1) is Fn−1-measurable by previsibility. So

E[Xn −Xn−1|Fn−1] = An − An−1, (1)

and summation gives

An =
n∑
1

E[Xk −Xk−1|Fk−1], a.s.

We use this formula to define (An), clearly previsible. We then use (D) to
define (Mn), then a martingale, giving the Doob decomposition (D).

If X is a submartingale, the LHS of (1) is ≥ 0, so the RHS of (1) is ≥ 0,
i.e. (An) is increasing. //

Note. 1. Although the Doob decomposition is a simple result in discrete
time, the analogue in continuous time is deep (see Ch. V). This illustrates
the contrasts that may arise between the theories of stochastic processes in
discrete and continuous time.
2. Previsible processes are ‘easy’ (trading is easy if you can foresee price
movements!). So the Doob Decomposition splits any (adapted) process X
into two bits, the ‘easy’ (previsible) bit A and the ‘hard’ (martingale) bit M .
Moral: martingales are everywhere!
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3. Submartingales model favourable games, so are increasing on average. It
‘ought’ to be possible to split such a process into an increasing bit, and a
remaining ‘trendless’ bit. It is – the trendless bit is the martingale.
4. This situation resembles that in Statistics, specifically Regression (see e.g.
[BF]), where one has a decomposition

Data = Signal + noise = fitted value + residual.
§9. Examples.
1. Simple random walk.

Recall the simple random walk: Sn :=
∑n

1 Xk, where the Xn are inde-
pendent tosses of a fair coin, taking values ±1 with equal probability 1/2.
Suppose we decide to bet until our net gain is first +1, then quit. Let T be
the time we quit; T is a stopping time.

The stopping-time T has been analysed in detail; see e.g.
[GS] GRIMMETT, G. R. & STIRZAKER, D.: Probability and random pro-
cesses, OUP, 3rd ed., 2001 [2nd ed. 1992, 1st ed. 1982], §5.2.
From this, note:
(i) T < ∞ a.s.: the gambler will certainly achieve a net gain of +1 eventually;
(ii) ET = +∞: the mean waiting-time till this happens is infinity. So:
(iii) No bound can be imposed on the gambler’s maximum net loss before his
net gain first becomes +1.

At first sight, this looks like a foolproof way to make money out of noth-
ing: just bet till you get ahead (which happens eventually, by (i)), then quit.
However, as a gambling strategy, this is hopelessly impractical: because of
(ii), you need unlimited time, and because of (iii), you need unlimited capital
– neither of which is realistic.

Notice that the Optional Stopping Theorem fails here: we start at zero,
so S0 = 0, ES0 = 0; but ST = 1, so EST = 1. This shows two things:
(a) The Optional Stopping Theorem does indeed need conditions, as the con-
clusion may fail otherwise [none of the conditions (i) - (iii) in the OST are
satisfied in the example above],
(b) Any practical gambling (or trading) strategy needs to have some inte-
grability or boundedness restrictions to eliminate such theoretically possible
but practically ridiculous cases.
2. The doubling strategy.

The strategy of doubling when losing – the martingale, according to the
Oxford English Dictionary (§3) has similar properties – and would be suicidal
in practice as a result.
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Chapter IV. MATHEMATICAL FINANCE IN DISCRETE TIME.

We follow [BK], Ch. 4.

§1. The Model.
It suffices, to illustrate the ideas, to work with a finite probability space

(Ω,F ,P), with a finite number |Ω| of points ω, each with positive probabil-
ity: P ({ω}) > 0. We will use a finite time-horizon N , which will correspond
to the expiry date of the options.

As before, we use a filtration F0 ⊂ F1 ⊂ · · · ⊂ FN : we may (and shall)
take F0 = {∅,Ω}, the trivial σ-field, FN = F = P(Ω) (here P(Ω) is the
power-set of Ω, the class of all 2|Ω| subsets of Ω: we need every possible sub-
set, as they all (apart from the empty set) carry positive probability.

The financial market contains d+1 financial assets: a riskless asset (bank
account) labelled 0, and d risky assets (stocks, say) labelled 1 to d. The prices
of the assets at time n are random variables, S0

n, S
1
n, · · · , Sd

n say [note that
we use superscripts here as labels, not powers, and suppress ω for brevity],
non-negative and Fn-measurable [at time n, we know the prices Si

n].
We take S0

0 = 1 (that is, we reckon in units of our initial bank holding).
We assume for convenience a constant interest rate r > 0 in the bank, so 1
unit in the bank at time 0 grows to (1 + r)n at time n. So 1/(1 + r)n is the
discount factor at time n.

Definition. A trading strategyH is a vector stochastic processH = (Hn)
N
n=0 =

((H0
n, H

1
n, · · · , Hd

n))
N
n=0 which is predictable (or previsible): each H i

n is Fn−1-
measurable for n ≥ 1.

Here H i
n denotes the number of shares of asset i held in the portfolio at

time n – to be determined on the basis of information available before time
n; the vector Hn = (H0

n, H
1
n, · · · , Hd

n) is the portfolio at time n. Writing
Sn = (S0

n, S
1
n, · · · , Sd

n) for the vector of prices at time n, the value of the
portfolio at time n is the scalar product

Vn(H) = Hn.Sn := Σd
i=0H

i
nS

i
n.

The discounted value is

Ṽn(H) = βn(Hn.Sn) = Hn.S̃n,
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where βn := 1/S0
n and S̃n = (1, βnS

1
n, · · · , βnS

d
n) is the vector of discounted

prices.
Note. The previsibility of H reflects that there is no insider trading.

Definition. The strategy H is self-financing, H ∈ SF , if

Hn.Sn = Hn+1.Sn (n = 0, 1, · · · , N − 1).

Interpretation. When new prices Sn are quoted at time n, the investor adjusts
his portfolio from Hn to Hn+1, without bringing in or consuming any wealth.
Note.

Vn+1(H)− Vn(H) = Hn+1.Sn+1 −Hn.Sn

= Hn+1.(Sn+1 − Sn) + (Hn+1.Sn −Hn.Sn).

For a self-financing strategy, the second term on the right is zero. Then the
LHS, the net increase in the value of the portfolio, is shown as due only to
the price changes Sn+1 − Sn. So for H ∈ SF ,

Vn(H)− Vn−1(H) = Hn(Sn − Sn−1),

∆Vn(H) = Hn.∆Sn, Vn(H) = V0(H) + Σn
1Hj.∆Sj

and Vn(H) is the martingale transform of S by H (III.6). Similarly with
discounting:

∆Ṽn(H) = Hn.∆S̃n, Ṽn(H) = V0(H) + Σn
1Hj.∆S̃j

(∆S̃n := S̃n − S̃n−1 = βnSn − βn−1Sn−1).
As in I, we are allowed to borrow (so S0

n may be negative) and sell short
(so Si

n may be negative for i = 1, · · · , d). So it is hardly surprising that if we
decide what to do about the risky assets, the bank account will take care of
itself, in the following sense.

Proposition. If ((H1
n, · · · , Hd

n))
N
n=0 is predictable and V0 is F0-measurable,

there is a unique predictable process (H0
n)

N
n=0 such thatH = (H0, H1, · · · , Hd)

is self-financing with initial value V0.

4


