m3a22l13tex
Lecture 13 10.11.2014
Optional Stopping Theorem (continued).
The OST is important in many areas, such as sequential analysis in statistics. We turn in the next section to related ideas specific to the gambling/financial context.

Write $X_{n}^{T}:=X_{n \wedge T}$ for the sequence $\left(X_{n}\right)$ stopped at time T.
Proposition. (i) If (X_{n}) is adapted and T is a stopping-time, the stopped sequence $\left(X_{n \wedge T}\right)$ is adapted.
(ii) If $\left(X_{n}\right)$ is a martingale [supermartingale] and T is a stopping time, $\left(X_{n}^{T}\right)$ is a martingale [supermartingale].

Proof. If $\phi_{j}:=I\{j \leq T\}$,

$$
X_{T \wedge n}=X_{0}+\sum_{1}^{n} \phi_{j}\left(X_{j}-X_{j-1}\right) .
$$

Since $\{j \leq T\}$ is the complement of $\{T<j\}=\{T \leq j-1\} \in \mathcal{F}_{j-1}$, $\phi_{j}=I\{j \leq T\} \in \mathcal{F}_{j-1}$, so $\left(\phi_{n}\right)$ is previsible. So $\left(X_{n}^{T}\right)$ is adapted.

If $\left(X_{n}\right)$ is a martingale, so is $\left(X_{n}^{T}\right)$ as it is the martingale transform of $\left(X_{n}\right)$ by $\left(\phi_{n}\right)$. Since by previsibility of $\left(\phi_{n}\right)$

$$
E\left[X_{T \wedge n} \mid \mathcal{F}_{n-1}\right]=X_{0}+\sum_{1}^{n-1} \phi_{j}\left(X_{j}-X_{j-1}\right)+\phi_{n}\left(E\left[X_{n} \mid \mathcal{F}_{n-1}\right]-X_{n-1}\right)
$$

i.e.

$$
E\left[X_{T \wedge n} \mid \mathcal{F}_{n-1}\right]-X_{T \wedge n}=\phi_{n}\left(E\left[X_{n} \mid \mathcal{F}_{n-1}\right]-X_{n-1}\right),
$$

$\phi_{n} \geq 0$ shows that if $\left(X_{n}\right)$ is a supermg [submg], so is $\left(X_{T \wedge n}\right)$. //

§7. The Snell Envelope and Optimal Stopping.

Definition. If $Z=\left(Z_{n}\right)_{n=0}^{N}$ is a sequence adapted to a filtration $\left(\mathcal{F}_{n}\right)$, the sequence $U=\left(U_{n}\right)_{n=0}^{N}$ defined by

$$
\left\{\begin{array}{l}
U_{N}:=Z_{N}, \\
U_{n}:=\max \left(Z_{n}, E\left(U_{n+1} \mid \mathcal{F}_{n}\right)\right) \quad(n \leq N-1)
\end{array}\right.
$$

is called the Snell envelope of Z (J. L. Snell in 1952; [N] Ch. 6). U is adapted, i.e. $U_{n} \in \mathcal{F}_{n}$ for all n. For, Z is adapted, so $Z_{n} \in \mathcal{F}_{n}$. Also $E\left[U_{n+1} \mid \mathcal{F}_{n}\right] \in \mathcal{F}_{n}$ (definition of conditional expectation). Combining, $U_{n} \in \mathcal{F}_{n}$, as required.

We shall see in Ch. IV that the Snell envelope is exactly the tool needed in pricing American options. It is the least supermg majorant:

Theorem. The Snell envelope $\left(U_{n}\right)$ of $\left(Z_{n}\right)$ is a supermartingale, and is the smallest supermartingale dominating $\left(Z_{n}\right)$ (that is, with $U_{n} \geq Z_{n}$ for all n).

Proof. First, $U_{n} \geq E\left(U_{n+1} \mid \mathcal{F}_{n}\right)$, so U is a supermartingale, and $U_{n} \geq Z_{n}$, so U dominates Z.

Next, let $T=\left(T_{n}\right)$ be any other supermartingale dominating Z; we must show T dominates U also. First, since $U_{N}=Z_{N}$ and T dominates $Z, T_{N} \geq$ U_{N}. Assume inductively that $T_{n} \geq U_{n}$. Then

$$
\begin{gathered}
T_{n-1} \geq E\left(T_{n} \mid \mathcal{F}_{n-1}\right) \quad \text { (as } T \text { is a supermartingale) } \\
\geq E\left(U_{n} \mid \mathcal{F}_{n-1}\right) \quad \text { (by the induction hypothesis) }
\end{gathered}
$$

and

$$
T_{n-1} \geq Z_{n-1} \quad(\text { as } T \text { dominates } Z)
$$

Combining,

$$
T_{n-1} \geq \max \left(Z_{n-1}, E\left(U_{n} \mid \mathcal{F}_{n-1}\right)\right)=U_{n-1} .
$$

By backward induction, $T_{n} \geq U_{n}$ for all n, as required. //
Note. It is no accident that we are using induction here backwards in time. We will use the same method - also known as dynamic programming (DP) in Ch. IV below when we come to pricing American options.

Proposition. $T_{0}:=\min \left\{n \geq 0: U_{n}=Z_{n}\right\}$ is a stopping time, and the stopped sequence $\left(U_{n}^{T_{0}}\right)$ is a martingale.

Proof (not examinable). Since $U_{N}=Z_{N}, T_{0} \in\{0,1, \cdots, N\}$ is well-defined (and we can use minimum rather than infimum). For $k=0,\left\{T_{0}=0\right\}=$ $\left\{U_{0}=Z_{0}\right\} \in \mathcal{F}_{0} ;$ for $k \geq 1$,

$$
\left\{T_{0}=k\right\}=\left\{U_{0}>Z_{0}\right\} \cap \cdots \cap\left\{U_{k-1}>Z_{k-1}\right\} \cap\left\{U_{k}=Z_{k}\right\} \in \mathcal{F}_{k} .
$$

So T_{0} is a stopping-time.
As in the proof of the Proposition in $\S 6$,

$$
U_{n}^{T_{0}}=U_{n \wedge T_{0}}=U_{o}+\sum_{1}^{n} \phi_{j} \Delta U_{j},
$$

where $\phi_{j}=I\left\{T_{0} \geq j\right\}$ is adapted. For $n \leq N-1$,

$$
U_{n+1}^{T_{0}}-U_{n}^{T_{0}}=\phi_{n+1}\left(U_{n+1}-U_{n}\right)=I\left\{n+1 \leq T_{0}\right\}\left(U_{n+1}-U_{n}\right) .
$$

Now $U_{n}:=\max \left(Z_{n}, E\left(U_{n+1} \mid \mathcal{F}_{n}\right)\right)$, and

$$
U_{n}>Z_{n} \quad \text { on }\left\{n+1 \leq T_{0}\right\} .
$$

So from the definition of U_{n},

$$
U_{n}=E\left(U_{n+1} \mid \mathcal{F}_{n}\right) \quad \text { on }\left\{n+1 \leq T_{0}\right\} .
$$

We next prove

$$
\begin{equation*}
U_{n+1}^{T_{0}}-U_{n}^{T_{0}}=I\left\{n+1 \leq T_{0}\right\}\left(U_{n+1}-E\left(U_{n+1} \mid \mathcal{F}_{n}\right)\right) . \tag{1}
\end{equation*}
$$

For, suppose first that $T_{0} \geq n+1$. Then the left of (1) is $U_{n+1}-U_{n}$, the right is $U_{n+1}-E\left(U_{n+1} \mid \mathcal{F}_{n}\right)$, and these agree on $\left\{n+1 \leq T_{0}\right\}$ by above. The other possibility is that $T_{0}<n+1$, i.e. $T_{0} \leq n$. Then the left of (1) is $U_{T_{0}}-U_{T_{0}}=0$, while the right is zero because the indicator is zero. Combining, this proves (1) as required. Apply $E\left(. \mid \mathcal{F}_{n}\right)$ to (1): since $\left\{n+1 \leq T_{0}\right\}=\left\{T_{0} \leq n\right\}^{c} \in \mathcal{F}_{n}$,

$$
\begin{gathered}
E\left[\left(U_{n+1}^{T_{0}}-U_{n}^{T_{0}}\right) \mid \mathcal{F}_{n}\right]=I\left\{n+1 \leq T_{0}\right\} E\left(\left[U_{n+1}-E\left(U_{n+1} \mid \mathcal{F}_{n}\right)\right] \mid \mathcal{F}_{n}\right) \\
\left.=I\left\{n+1 \leq T_{0}\right)\right\}\left[E\left(U_{n+1} \mid \mathcal{F}_{n}\right)-E\left(U_{n+1} \mid \mathcal{F}_{n}\right)\right]=0 .
\end{gathered}
$$

So $E\left(U_{n+1}^{T_{0}} \mid \mathcal{F}_{n}\right)=U_{n}^{T_{0}}$. This says that $U_{n}^{T_{0}}$ is a martingale, as required. //
Note. Just because U is a supermartingale, we knew that stopping it would give a supermartingale, by the Proposition of $\S 6$. The point is that, using the special properties of the Snell envelope, we actually get a martingale.

Write $\mathcal{T}_{n, N}$ for the set of stopping times taking values in $\{n, n+1, \cdots, N\}$ (a finite set, as Ω is finite). We next see that the Snell envelope solves the optimal stopping problem: it maximises the expectation of our final value of
Z - the value when we choose to quit - conditional on our present information.

Theorem. T_{0} solves the optimal stopping problem for Z :

$$
U_{0}=E\left(Z_{T_{0}} \mid \mathcal{F}_{0}\right)=\max \left\{E\left(Z_{T} \mid \mathcal{F}_{0}\right): T \in \mathcal{T}_{0, N}\right\}
$$

Proof. As $\left(U_{n}^{T_{0}}\right)$ is a martingale (above),

$$
\begin{array}{rlrl}
U_{0} & =U_{0}^{T_{0}} \quad\left(\text { since } 0=0 \wedge T_{0}\right) \\
& =E\left(U_{N}^{T_{0}} \mid \mathcal{F}_{0}\right) & & (\text { by the martingale property) } \\
& =E\left(U_{T_{0}} \mid \mathcal{F}_{0}\right) & & \left(\text { since } T_{0}=T_{0} \wedge N\right) \\
& =E\left(Z_{T_{0}} \mid \mathcal{F}_{0}\right) & & \left(\text { since } U_{T_{0}}=Z_{T_{0}}\right)
\end{array}
$$

proving the first statement. Now for any stopping time $T \in \mathcal{T}_{0, N}$, since U is a supermartingale (above), so is the stopped process $\left(U_{n}^{T}\right)(\S 6)$. So

$$
\begin{aligned}
U_{0} & =U_{0}^{T} \quad(0=0 \wedge T, \text { as above }) \\
& \geq E\left(U_{N}^{T} \mid \mathcal{F}_{0}\right) \quad\left(\left(U_{n}^{T}\right) \text { a supermartingale }\right) \\
& =E\left(U_{T} \mid \mathcal{F}_{0}\right) \quad(T=T \wedge N) \\
& \geq E\left(Z_{T} \mid \mathcal{F}_{0}\right) \quad\left(\left(U_{n}\right) \text { dominates }\left(Z_{n}\right)\right)
\end{aligned}
$$

and this completes the proof. //
The same argument, starting at time n rather than time 0 , gives an apparently more general version:

Theorem. If $T_{n}:=\min \left\{j \geq n: U_{j}=Z_{j}\right\}$,

$$
U_{n}=E\left(Z_{T_{n}} \mid \mathcal{F}_{n}\right)=\sup \left\{E\left(Z_{T} \mid \mathcal{F}_{n}\right): T \in \mathcal{T}_{n, N}\right\}
$$

To recapitulate: as we are attempting to maximise our payoff by stopping $Z=\left(Z_{n}\right)$ at the most advantageous time, the Theorem shows that T_{n} gives the best stopping-time that is realistic: it maximises our expected payoff given only information currently available (it is easy, but irrelevant, to maximise things with hindsight!). We thus call T_{0} (or T_{n}, starting from time n) the optimal stopping time for the problem.

