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Lecture 13 10.11.2014
Optional Stopping Theorem (continued).

The OST is important in many areas, such as sequential analysis in
statistics. We turn in the next section to related ideas specific to the gam-
bling/financial context.

Write XT
n := Xn∧T for the sequence (Xn) stopped at time T .

Proposition. (i) If (Xn) is adapted and T is a stopping-time, the stopped
sequence (Xn∧T ) is adapted.
(ii) If (Xn) is a martingale [supermartingale] and T is a stopping time, (XT

n )
is a martingale [supermartingale].

Proof. If ϕj := I{j ≤ T},

XT∧n = X0 +
n∑
1

ϕj(Xj −Xj−1).

Since {j ≤ T} is the complement of {T < j} = {T ≤ j − 1} ∈ Fj−1,
ϕj = I{j ≤ T} ∈ Fj−1, so (ϕn) is previsible. So (XT

n ) is adapted.
If (Xn) is a martingale, so is (XT

n ) as it is the martingale transform of
(Xn) by (ϕn). Since by previsibility of (ϕn)

E[XT∧n|Fn−1] = X0 +
n−1∑
1

ϕj(Xj −Xj−1) + ϕn(E[Xn|Fn−1]−Xn−1),

i.e.
E[XT∧n|Fn−1]−XT∧n = ϕn(E[Xn|Fn−1]−Xn−1),

ϕn ≥ 0 shows that if (Xn) is a supermg [submg], so is (XT∧n). //

§7. The Snell Envelope and Optimal Stopping.

Definition. If Z = (Zn)
N
n=0 is a sequence adapted to a filtration (Fn), the

sequence U = (Un)
N
n=0 defined by{

UN := ZN ,
Un := max(Zn, E(Un+1|Fn)) (n ≤ N − 1)
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is called the Snell envelope of Z (J. L. Snell in 1952; [N] Ch. 6). U is adapted,
i.e. Un ∈ Fn for all n. For, Z is adapted, so Zn ∈ Fn. Also E[Un+1|Fn] ∈ Fn

(definition of conditional expectation). Combining, Un ∈ Fn, as required.
We shall see in Ch. IV that the Snell envelope is exactly the tool needed

in pricing American options. It is the least supermg majorant:

Theorem. The Snell envelope (Un) of (Zn) is a supermartingale, and is the
smallest supermartingale dominating (Zn) (that is, with Un ≥ Zn for all n).

Proof. First, Un ≥ E(Un+1|Fn), so U is a supermartingale, and Un ≥ Zn, so
U dominates Z.

Next, let T = (Tn) be any other supermartingale dominating Z; we must
show T dominates U also. First, since UN = ZN and T dominates Z, TN ≥
UN . Assume inductively that Tn ≥ Un. Then

Tn−1 ≥ E(Tn|Fn−1) (as T is a supermartingale)

≥ E(Un|Fn−1) (by the induction hypothesis)

and
Tn−1 ≥ Zn−1 (as T dominates Z).

Combining,
Tn−1 ≥ max(Zn−1, E(Un|Fn−1)) = Un−1.

By backward induction, Tn ≥ Un for all n, as required. //

Note. It is no accident that we are using induction here backwards in time.
We will use the same method – also known as dynamic programming (DP) –
in Ch. IV below when we come to pricing American options.

Proposition. T0 := min{n ≥ 0 : Un = Zn} is a stopping time, and the
stopped sequence (UT0

n ) is a martingale.

Proof (not examinable). Since UN = ZN , T0 ∈ {0, 1, · · · , N} is well-defined
(and we can use minimum rather than infimum). For k = 0, {T0 = 0} =
{U0 = Z0} ∈ F0; for k ≥ 1,

{T0 = k} = {U0 > Z0} ∩ · · · ∩ {Uk−1 > Zk−1} ∩ {Uk = Zk} ∈ Fk.
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So T0 is a stopping-time.
As in the proof of the Proposition in §6,

UT0
n = Un∧T0 = Uo +

n∑
1

ϕj∆Uj,

where ϕj = I{T0 ≥ j} is adapted. For n ≤ N − 1,

UT0
n+1 − UT0

n = ϕn+1(Un+1 − Un) = I{n+ 1 ≤ T0}(Un+1 − Un).

Now Un := max(Zn, E(Un+1|Fn)), and

Un > Zn on {n+ 1 ≤ T0}.

So from the definition of Un,

Un = E(Un+1|Fn) on {n+ 1 ≤ T0}.

We next prove

UT0
n+1 − UT0

n = I{n+ 1 ≤ T0}(Un+1 − E(Un+1|Fn)). (1)

For, suppose first that T0 ≥ n+1. Then the left of (1) is Un+1−Un, the right
is Un+1 −E(Un+1|Fn), and these agree on {n+1 ≤ T0} by above. The other
possibility is that T0 < n+1, i.e. T0 ≤ n. Then the left of (1) is UT0−UT0 = 0,
while the right is zero because the indicator is zero. Combining, this proves
(1) as required. Apply E(.|Fn) to (1): since {n+1 ≤ T0} = {T0 ≤ n}c ∈ Fn,

E[(UT0
n+1 − UT0

n )|Fn] = I{n+ 1 ≤ T0}E([Un+1 − E(Un+1|Fn)]|Fn)

= I{n+ 1 ≤ T0)}[E(Un+1|Fn)− E(Un+1|Fn)] = 0.

So E(UT0
n+1|Fn) = UT0

n . This says that UT0
n is a martingale, as required. //

Note. Just because U is a supermartingale, we knew that stopping it would
give a supermartingale, by the Proposition of §6. The point is that, using
the special properties of the Snell envelope, we actually get a martingale.

Write Tn,N for the set of stopping times taking values in {n, n+1, · · · , N}
(a finite set, as Ω is finite). We next see that the Snell envelope solves the
optimal stopping problem: it maximises the expectation of our final value of
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Z – the value when we choose to quit – conditional on our present informa-
tion.

Theorem. T0 solves the optimal stopping problem for Z:

U0 = E(ZT0 |F0) = max{E(ZT |F0) : T ∈ T0,N}.

Proof. As (UT0
n ) is a martingale (above),

U0 = UT0
0 (since 0 = 0 ∧ T0)

= E(UT0
N |F0) (by the martingale property)

= E(UT0 |F0) (since T0 = T0 ∧N)

= E(ZT0 |F0) (since UT0 = ZT0),

proving the first statement. Now for any stopping time T ∈ T0,N , since U is
a supermartingale (above), so is the stopped process (UT

n ) (§6). So

U0 = UT
0 (0 = 0 ∧ T , as above)

≥ E(UT
N |F0) ((UT

n ) a supermartingale)

= E(UT |F0) (T = T ∧N)

≥ E(ZT |F0) ((Un) dominates (Zn)),

and this completes the proof. //

The same argument, starting at time n rather than time 0, gives an ap-
parently more general version:

Theorem. If Tn := min{j ≥ n : Uj = Zj},

Un = E(ZTn|Fn) = sup{E(ZT |Fn) : T ∈ Tn,N}.

To recapitulate: as we are attempting to maximise our payoff by stopping
Z = (Zn) at the most advantageous time, the Theorem shows that Tn gives
the best stopping-time that is realistic: it maximises our expected payoff given
only information currently available (it is easy, but irrelevant, to maximise
things with hindsight!). We thus call T0 (or Tn, starting from time n) the
optimal stopping time for the problem.
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