
m3a22l12tex
Lecture 12 7.11.2014
Martingale convergence (continued).

More is true. Call X L1-bounded if

sup
n

E|Xn| < ∞.

Theorem (Doob). An L1-bounded supermartingale is a.s. convergent:
there exists X∞ finite such that

Xn → X∞ (n → ∞) a.s.

In particular, we have

Doob’s Martingale Convergence Theorem [W, §11.5]. An L1-bounded
martingale converges a.s.

We say that
Xn → X∞ in L1

if
E|Xn −X∞| → 0 (n → ∞).

For a class of martingales, one gets convergence in L1 as well as almost
surely [= with probability one]. Such martingales are called uniformly inte-
grable (UI) [W], or regular [N], or closed (see below).

The following result is in [N], IV.2, [W], Ch. 14; cf. SP L18-19, SA L6.

Theorem (UI Martingale Convergence Theorem). The following are
equivalent for martingales X = (Xn):
(i) Xn converges in L1,
(ii) Xn is L1-bounded, and its a.s. limit X∞ (which exists, by above) satisfies

Xn = E[X∞|Fn],

(iii) There exists an integrable random variable X with

Xn = E[X|Fn].

The random variable X∞ above serves to ”close” the martingale, by giv-
ingXn a value at ”n = ∞”; then {Xn : n = 1, 2, . . . ,∞} is again a martingale

1



– which we may accordingly call a closed mg. The terms closed, regular and
UI are used interchangeably here.

Notice that all the randomness in a closed mg is in the closing value
X∞ (so, although a stochastic process is an infinite-dimensional object, the
randomness in a closed mg is one-dimensional). As time progresses, more
is revealed, by ”progressive revelation” – as in (choose your metaphor) a
striptease, or the ”Day of Judgement” (when all will be revealed).

As we shall see (Risk-Neutral Valuation Formula): closed mgs are vital
in mathematical finance, and the closing value corresponds to the payoff of
an option.

§5. Martingale Transforms.

Now think of a gambling game, or series of speculative investments, in
discrete time. There is no play at time 0; there are plays at times n = 1, 2, · · ·,
and

∆Xn := Xn −Xn−1

represents our net winnings per unit stake at play n. Thus if Xn is a mar-
tingale, the game is ‘fair on average’.

Call a process C = (Cn)
∞
n=1 previsible (or predictable) if

Cn is Fn−1 −measurable for all n ≥ 1.

Think of Cn as your stake on play n (C0 is not defined, as there is no play at
time 0). Previsibility says that you have to decide how much to stake on play
n based on the history before time n (i.e., up to and including play n − 1).
Your winnings on game n are Cn∆Xn = Cn(Xn − Xn−1). Your total (net)
winnings up to time n are

Yn =
n∑

k=1

Ck∆Xk =
n∑

k=1

Ck(Xk −Xk−1).

We write

Y = C •X, Yn = (C •X)n, ∆Yn = Cn∆Xn

((C •X)0 = 0 as
∑0

1 is empty), and call C •X the martingale transform of
X by C.
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Theorem. (i) If C is a bounded non-negative previsible process and X is a
supermartingale, C •X is a supermartingale null at zero.
(ii) If C is bounded and previsible and X is a martingale, C •X is a martin-
gale null at zero.

Proof. With Y = C •X as above,

E[Yn − Yn−1|Fn−1] = E[Cn(Xn −Xn−1)|Fn−1]

= CnE[(Xn −Xn−1)|Fn−1]

(as Cn is bounded, so integrable, and Fn−1-measurable, so can be taken out)

≤ 0

in case (i), as C ≥ 0 and X is a supermartingale,

= 0

in case (ii), as X is a martingale. //

Interpretation. You can’t beat the system!
In the martingale case, previsibility of C means we can’t foresee the future
(which is realistic and fair). So we expect to gain nothing – as we should.
Note. 1. Martingale transforms were introduced and studied by D. L.
BURKHOLDER in 1966 [Ann. Math. Statist. 37, 1494-1504]. For a text-
book account, see e.g. [N], VIII.4.
2. Martingale transforms are the discrete analogues of stochastic integrals.
They dominate the mathematical theory of finance in discrete time, just as
stochastic integrals dominate the theory in continuous time.
3. In mathematical finance, X plays the role of a price process, C plays the
role of our trading strategy, and the mg transform C • X plays the role of
our gains (or losses!) from trading.

Proposition (Martingale Transform Lemma). An adapted sequence of
real integrable random variables (Mn) is a martingale iff for any bounded
previsible sequence (Hn),

E(
n∑

r=1

Hr∆Mr) = 0 (n = 1, 2, · · ·).
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Proof. If (Mn) is a martingale,X defined byX0 = 0,Xn =
∑n

1 Hr∆Mr (n ≥
1) is the martingale transform H •M , so is a martingale.

Conversely, if the condition of the Proposition holds, choose j, and for
any Fj-measurable set A write Hn = 0 for n ̸= j + 1, Hj+1 = IA. Then
(Hn) is previsible, so the condition of the Proposition, E(

∑n
1 Hr∆Mr) = 0,

becomes
E[IA(Mj+1 −Mj)] = 0.

As this holds for every A ∈ Fj, the definition of conditional expectation gives

E(Mj+1|Fj) = Mj.

Since this holds for every j, (Mn) is a martingale. //

§6. Stopping Times and Optional Stopping.

A random variable T taking values in {0, 1, 2, · · · ; +∞} is called a stopping
time (or optional time) if

{T ≤ n} = {ω : T (ω) ≤ n} ∈ Fn ∀n ≤ ∞.

Equivalently,
{T = n} ∈ Fn n ≤ ∞.

Think of T as a time at which you decide to quit a gambling game: whether
or not you quit at time n depends only on the history up to and including
time n – NOT the future. [Elsewhere, T denotes the expiry time of an option.
If we mean T to be a stopping time, we will say so.]

The following important classical theorem is discussed in [W], 10.10.

Theorem (Doob’s Optional Stopping Theorem, OST). Let T be a
stopping time, X = (Xn) be a supermartingale, and assume that one of the
following holds:
(i) T is bounded [T (ω) ≤ K for some constant K and all ω ∈ Ω];
(ii) X = (Xn) is bounded [|Xn(ω)| ≤ K for some K and all n, ω];
(iii) ET < ∞ and (Xn −Xn−1) is bounded.

Then XT is integrable, and

EXT ≤ EX0.

If here X is a martingale, then

EXT = EX0.
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