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Chapter III. STOCHASTIC PROCESSES IN DISCRETE TIME.

§1. Filtrations.

The Kolmogorov triples (Ω,F , P ), and the Kolmogorov conditional ex-
pectations E(X|B), give us all the machinery we need to handle static situ-
ations involving randomness. To handle dynamic situations, involving ran-
domness which unfolds with time, we need further structure.

We may take the initial, or starting, time as t = 0. Time may evolve
discretely, or continuously. We postpone the continuous case to Ch. V; in
the discrete case, we may suppose time evolves in integer steps, t = 0, 1, 2, · · ·
(say, stock-market quotations daily, or tick data by the second). There may
be a final time T , or time horizon, or we may have an infinite time horizon
(in the context of option pricing, the time horizon T is the expiry time).

We wish to model a situation involving randomness unfolding with time.
We suppose, for simplicity, that information is never lost (or forgotten): thus,
as time increases we learn more. Recall that σ-fields represent information
or knowledge. We thus need a sequence of σ-fields {Fn : n = 0, 1, 2, · · ·},
which are increasing:

Fn ⊂ Fn+1 (n = 0, 1, 2, · · ·),

with Fn representing the information, or knowledge, available to us at time
n. We shall always suppose all σ-fields to be complete (this can be avoided,
and is not always appropriate, but it simplifies matters and suffices for our
purposes). Thus F0 represents the initial information (if there is none, F0 =
{∅,Ω}, the trivial σ-field). On the other hand,

F∞ := limn→∞Fn

represents all we ever will know (the ‘Doomsday σ-field’). Often, F∞ will be
F (the σ-field from Ch. II, representing ‘knowing everything’. But this will
not always be so; see e.g. [W], §15.8 for an interesting example.

Such a family {Fn : n = 0, 1, 2, · · ·} is called a filtration; a probabil-
ity space endowed with such a filtration, {Ω, {Fn},F ,P} is called a filtered
probability space. (These definitions are due to P. A. MEYER of Strasbourg;
Meyer and the Strasbourg (and more generally, French) school of probabilists
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have been responsible for the ‘general theory of [stochastic] processes’, and
for much of the progress in stochastic integration, since the 1960s.) Since
the filtration is so basic to the definition of a stochastic process, the more
modern term for a filtered probability space is a stochastic basis.

§2. Discrete-Parameter Stochastic Processes.

A stochastic process X = {Xt : t ∈ I} is a family of random variables,
defined on some common probability space, indexed by an index-set I. Usu-
ally (always in this course), I represents time (sometimes I represents space,
and one calls X a spatial process). Here, I = {0, 1, 2, · · · , T} (finite horizon)
or I = {0, 1, 2, · · ·} (infinite horizon).

The (stochastic) process X = (Xn)
∞
n=0 is said to be adapted to the filtra-

tion (Fn)
∞
n=0 if

Xn is Fn −measurable.

So if X is adapted, we will know the value of Xn at time n. If

Fn = σ(X0, X1, · · · , Xn)

we call (Fn) the natural filtration of X. Thus a process is always adapted to
its natural filtration. A typical situation is that

Fn = σ(W0,W1, · · · ,Wn)

is the natural filtration of some process W = (Wn). Then X is adapted to
(Fn), i.e. each Xn is Fn- (or σ(W0, · · · ,Wn)-) measurable, iff

Xn = fn(W0,W1, · · · ,Wn)

for some measurable function fn (non-random) of n+ 1 variables.
Notation.

For a random variable X on (Ω,F , P ), X(ω) is the value X takes on ω
(ω represents the randomness). Often, to simplify notation, ω is suppressed
- e.g., we may write EX :=

∫
Ω
XdP instead of EX :=

∫
Ω
X(ω)dP (ω).

For a stochastic process X = (Xn), it is convenient (e.g., if using suffices,
ni say) to use Xn, X(n) interchangeably, and we shall feel free to do this.
With ω displayed, these become Xn(ω), X(n, ω), etc.
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§3. Discrete-Parameter Martingales.

We summarise what we need; for details, see [W], or e.g. [N]
Definition.

A process X = (Xn) is called a martingale (mg for short) relative to
((Fn), P ) if
(i) X is adapted (to (Fn)),
(ii) E|Xn| < ∞ for all n,
(iii) E[Xn|Fn−1] = Xn−1 P − a.s. (n ≥ 1);
X is a supermartingale if in place of (iii)

E[Xn|Fn−1] ≤ Xn−1 P − a.s. (n ≥ 1);

X is a submartingale if in place of (iii)

E[Xn|Fn−1] ≥ Xn−1 P − a.s. (n ≥ 1).

Thus: a mg is ‘constant on average’, and models a fair game;
a supermg is ‘decreasing on average’, and models an unfavourable game;
a submg is ‘increasing on average’, and models a favourable game.
Note. 1. Martingales have many connections with harmonic functions in
probabilistic potential theory. The terminology in the inequalities above
comes from this: supermartingales correspond to superharmonic functions,
submartingales to subharmonic functions.
2. X is a submg [supermg] iff −X is a supermg [submg]; X is a mg iff it is
both a submg and a supermg.
3. (Xn) is a mg iff (Xn −X0) is a mg. So we may without loss of generality
take X0 = 0 when convenient.
4. If X is a mg, then for m < n

E[Xn|Fm] = E[E(Xn|Fn−1)|Fm] (iterated conditional expectations)

= E[Xn−1|Fm] a.s. (martingale property)

= · · · = E[Xm|Fm] a.s. (induction on n),

= Xm (Xm is Fm-measurable)

and similarly for submartingales, supermartingales.
5. Examples of a mg include: sums of independent, integrable zero-mean
random variables [submg: positive mean; supermg: negative mean].
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From the OED: martingale (etymology unknown)
1. 1589. An article of harness, to control a horse’s head.
2. Naut. A rope for guying down the jib-boom to the dolphin-striker.
3. A system of gambling which consists in doubling the stake when losing in
order to recoup oneself (1815).
Thackeray: ‘You have not played as yet? Do not do so; above all avoid a
martingale if you do.’
Problem. Analyse this strategy.

Gambling games have been studied since time immemorial - indeed, the
Pascal-Fermat correspondence of 1654 which started the subject was on a
problem (de Méré’s problem) related to gambling.

The doubling strategy above has been known at least since 1815.
The term ‘mg’ in our sense is due to J. VILLE (1939). Martingales were

studied by Paul LÉVY (1886-1971) from 1934 on [see obituary, Annals of
Probability 1 (1973), 5-6] and by J. L. DOOB (1910-2004) from 1940 on.
The first systematic exposition was Doob’s book [D], Ch. VII.
Example: Accumulating data about a random variable ([W], 96, 166-167).
If ξ ∈ L1(Ω,F ,P), Mn := E(ξ|Fn) (so Mn represents our best estimate of ξ
based on knowledge at time n), then

E[Mn|Fn−1] = E[E(ξ|Fn)|Fn−1]

= E[ξ|Fn−1] (iterated conditional expectations)

= Mn−1,

so (Mn) is a mg. One has the convergence

Mn → M∞ := E[ξ|F∞] a.s. and in L1;

see II.4 below.

§4. Martingale Convergence.

A supermartingale is ‘decreasing on average’. Recall that a decreasing
sequence [of real numbers] that is bounded below converges (decreases to
its greatest lower bound or infimum). This suggests that a supermartingale
which is bounded below converges a.s. This is so [Doob’s Forward Conver-
gence Theorem: [W], §§11.5, 11.7].
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