m3a22cwsoln(14).tex

M3A22 SOLUTIONS TO ASSESSED COURSEWORK. 8.12.2014

Q1. (i) The value C(K) of the right to buy an asset worth S for K is $(S-K)_+$. This is non-increasing in K. // [2] (ii) $C(K_1) - C(K_2)$ is the advantage the right to buy at K_1 gives over the right to buy at K_2 . This is worth $K_2 - K_1$ if both are exercised, and less otherwise. (One can also do Q1 by arbitrage arguments.) [2]

Q2. Write $\lambda := (K_3 - K_2)/(K_3 - K_1) \in (0, 1)$. We have to show that C(K) is convex in K, i.e. $C(K_2) = C(\lambda K_1 + (1 - \lambda)K_3) \leq \lambda C(K_1) + (1 - \lambda)C(K_3)$ ('curve lies below chord'). This is clear from the graph of $C(K) = (S - K)_+$. More formally: S - K and 0 are linear in K; linear functions are convex; the maximum of two convex functions is convex (check! – the set of convex functions forms a *lattice*).

Most people constructed an arbitrage (technically unnecessary but good practice!), and/or used Q1, and/or broke the payoff into four cases:

(i) $S < K_1$: all options worthless: LHS = RHS = 0. [2] (ii) $K_1 \leq S < K_2$: only $C(K_1)$ has value, $S - K_1$; LHS = 0, RHS = $\lambda(S - K_1) \geq 0$. [2] (iii) $K_2 \leq S < K_3$: LHS worth $S - K_2$, RHS worth $\lambda(S - K_1)$.

$$RHS - LHS = \lambda(S - K_1) - (S - K_2)$$

= $\frac{K_3 - K_2}{K_3 - K_1} \cdot (S - K_1) - (S - K_2)$
= $K_2 - K_1 \cdot \frac{K_3 - K_2}{K_3 - K_1} - S[1 - \frac{K_3 - K_2}{K_3 - K_1}]$
= $K_3 \cdot \frac{K_2 - K_1}{K_3 - K_1} - S \cdot \frac{K_2 - K_1}{K_3 - K_1}$
= $(K_3 - S) \cdot \frac{K_2 - K_1}{K_3 - K_1} \ge 0.$ [10]

(iv) LHS = RHS: for, LHS worth $S - K_2$; RHS worth $\lambda(S - K_1) + (1 - \lambda)(S - K_3) = S - \lambda K_1 - (1 - \lambda)K_3 = S - K_2$. // [2]

NHB