m3a22cwsoln(14).tex

M3A22 SOLUTIONS TO ASSESSED COURSEWORK. 8.12.2014
Q1. (i) The value $C(K)$ of the right to buy an asset worth S for K is $(S-K)_{+}$. This is non-increasing in K. //
(ii) $C\left(K_{1}\right)-C\left(K_{2}\right)$ is the advantage the right to buy at K_{1} gives over the right to buy at K_{2}. This is worth $K_{2}-K_{1}$ if both are exercised, and less otherwise. (One can also do Q1 by arbitrage arguments.)

Q2. Write $\lambda:=\left(K_{3}-K_{2}\right) /\left(K_{3}-K_{1}\right) \in(0,1)$. We have to show that $C(K)$ is convex in K, i.e. $C\left(K_{2}\right)=C\left(\lambda K_{1}+(1-\lambda) K_{3}\right) \leq \lambda C\left(K_{1}\right)+(1-\lambda) C\left(K_{3}\right)$ ('curve lies below chord'). This is clear from the graph of $C(K)=(S-K)_{+}$. More formally: $S-K$ and 0 are linear in K; linear functions are convex; the maximum of two convex functions is convex (check! - the set of convex functions forms a lattice).

Most people constructed an arbitrage (technically unnecessary but good practice!), and/or used Q1, and/or broke the payoff into four cases:
(i) $S<K_{1}$: all options worthless: $\mathrm{LHS}=$ RHS $=0$.
(ii) $K_{1} \leq S<K_{2}$: only $C\left(K_{1}\right)$ has value, $S-K_{1}$; LHS $=0$, RHS $=$ $\lambda\left(S-K_{1}\right) \geq 0$.
(iii) $K_{2} \leq S<K_{3}$: LHS worth $S-K_{2}$, RHS worth $\lambda\left(S-K_{1}\right)$.

$$
\begin{align*}
R H S-L H S & =\lambda\left(S-K_{1}\right)-\left(S-K_{2}\right) \\
& =\frac{K_{3}-K_{2}}{K_{3}-K_{1}} \cdot\left(S-K_{1}\right)-\left(S-K_{2}\right) \\
& =K_{2}-K_{1} \cdot \frac{K_{3}-K_{2}}{K_{3}-K_{1}}-S\left[1-\frac{K_{3}-K_{2}}{K_{3}-K_{1}}\right] \\
& =K_{3} \cdot \frac{K_{2}-K_{1}}{K_{3}-K_{1}}-S \cdot \frac{K_{2}-K_{1}}{K_{3}-K_{1}} \\
& =\left(K_{3}-S\right) \cdot \frac{K_{2}-K_{1}}{K_{3}-K_{1}} \geq 0 . \tag{10}
\end{align*}
$$

(iv) LHS $=$ RHS: for, LHS worth $S-K_{2}$; RHS worth

$$
\lambda\left(S-K_{1}\right)+(1-\lambda)\left(S-K_{3}\right)=S-\lambda K_{1}-(1-\lambda) K_{3}=S-K_{2} . / /
$$

