INTRODUCTION TO STATISTICAL METHODS

EXAMPLE 1: ONE SAMPLE TESTS
The following data represent the change (in ml) in the amount of Carbon monoxide transfer (an indicator of improved lung function) in smokers with chickenpox over a one week period:

33, 2, 24, 17, 4, 1, -6

Is there evidence of significant improvement in lung function
(a) if the data are normally distributed with \(\sigma = 10 \),
(b) if the data are normally distributed with \(\sigma \) unknown?

Use a significance level of \(\alpha = 0.05 \).

SOLUTION:
(a) Here we have a sample of size 7 with sample mean \(\bar{x} = 10.71 \). We want to test

\[
H_0 : \mu = 0.0, \quad H_1 : \mu \neq 0.0,
\]

under the assumption that the data follow a Normal distribution with \(\sigma = 10.0 \) known. Then, we have, in the Z-test,

\[
z = \frac{10.71 - 0.0}{10.0/\sqrt{7}} = 2.83,
\]

which lies in the critical region, as the critical values for this test are \(\pm 1.96 \), for significance level \(\alpha = 0.05 \). Therefore we have evidence to reject \(H_0 \). The p-value is given by

\[
p = 2\Phi(-2.83) = 0.004 < \alpha.
\]

(b) The sample variance is \(s^2 = 14.19^2 \). In the T-test, we have test statistic \(t \) given by

\[
t = \frac{\bar{x} - 0.0}{s/\sqrt{n}} = \frac{10.71 - 0.0}{14.19/\sqrt{7}} = 2.00.
\]

The upper critical value \(C_R \) is obtained by solving

\[
F_{\text{St}(n-1)}(C_R) = 0.975,
\]

where \(F_{\text{St}(n-1)} \) is the cdf of a Student-t distribution with \(n - 1 \) degrees of freedom; here \(n = 7 \), so we can use statistical tables or a computer to find that \(C_R = 2.447 \), and note that, as Student-t distributions are symmetric the lower critical value is \(-C_R \).

Thus \(t \) lies between the critical values, and not in the critical region. Therefore we have no evidence to reject \(H_0 \). The p-value is given by

\[
p = 2F_{\text{St}(n-1)}(-2.00) = 0.09 > \alpha.
\]
EXAMPLE 2: TWO SAMPLE TESTS

The efficacy of a treatment for hypertension (high blood pressure) is to be studied using a small clinical trial. Thirty-eight hypertensive patients were randomly allocated to either Group 0 (placebo control) or Group 1 (treatment) and a three-month follow-up study was carried out. At the end of the study, the difference in blood pressure was measured for patients in each group and recorded. A summary of the results is presented below:

<table>
<thead>
<tr>
<th>Group</th>
<th>n</th>
<th>\bar{x}</th>
<th>s^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>21</td>
<td>-0.208</td>
<td>4.101</td>
</tr>
<tr>
<td>1</td>
<td>17</td>
<td>3.953</td>
<td>4.630</td>
</tr>
</tbody>
</table>

Is there evidence of significant improvement in the treatment group? Use a significance level of $\alpha = 0.05$.

SOLUTION: We will assume that the two data sets are two independent random samples from two normal models with the same (unknown) variance, σ^2, that is

$$X_1, \ldots, X_{21} \sim N(\mu_0, \sigma^2),$$

$$Y_1, \ldots, Y_{17} \sim N(\mu_1, \sigma^2).$$

Here we want to test

$$H_0: \mu_0 = \mu_1,$$

$$H_1: \mu_0 \neq \mu_1.$$

In the two-sample T-test, we have test statistic t given by

$$t = \frac{\bar{y} - \bar{x}}{s_p \sqrt{\frac{1}{n_0} + \frac{1}{n_1}}}$$

where s_p^2 is the pooled estimate of common variance given by

$$s_p^2 = \frac{(n_0 - 1)s_0^2 + (n_1 - 1)s_1^2}{n_0 + n_1 - 2} = \frac{20 \times 4.101^2 + 16 \times 4.630^2}{36} = 4.344^2.$$

Thus the test statistic t is given by

$$t = \frac{3.953 - (-0.208)}{4.344 \sqrt{\frac{1}{21} + \frac{1}{17}}} = 2.936.$$

The upper critical value C_R is obtained by solving

$$F_{St(n-1)}(C_R) = 0.975$$

where $F_{St(n-1)}$ is the cdf of a Student-t distribution with $n_0 + n_1 - 2$ degrees of freedom; here $n_0 + n_1 - 2 = 36$, so we can find that $C_R = 2.028$, and the lower critical value is $-C_R$.

Thus, in this case, t lies in the critical region. Therefore we have **evidence to reject** H_0. The p-value is given by

$$p = 2F_{St(n-1)}(-2.936) = 0.006 < \alpha.$$
MAXIMUM LIKELIHOOD ESTIMATION

Suppose a sample \(x_1, \ldots, x_n \) is modelled by a Poisson distribution with parameter denoted \(\lambda \), so that

\[
f_X(x; \theta) = \frac{\lambda^x}{x!} e^{-\lambda}, \quad x = 0, 1, 2, \ldots,
\]

for some \(\lambda > 0 \). To estimate \(\lambda \) by maximum likelihood, proceed as follows.

STEP 1 Calculate the likelihood function \(L(\lambda) \) for \(\lambda \in \Theta = \mathbb{R}^+ \)

\[
L(\lambda) = \prod_{i=1}^{n} f_X(x_i; \lambda) = \prod_{i=1}^{n} \left\{ \frac{\lambda^{x_i}}{x_i!} e^{-\lambda} \right\} = \frac{\lambda^{x_1+\ldots+x_n}}{x_1!\ldots x_n!} e^{-n\lambda}.
\]

STEP 2 Calculate the log-likelihood \(\log L(\lambda) \).

\[
\log L(\lambda) = \sum_{i=1}^{n} x_i \log \lambda - n\lambda - \sum_{i=1}^{n} \log(x_i!).
\]

STEP 3 Differentiate \(\log L(\lambda) \) with respect to \(\lambda \), and equate the derivative to zero to find the m.l.e..

\[
\frac{d}{d\lambda} \{\log L(\lambda)\} = \sum_{i=1}^{n} \frac{x_i}{\lambda} - n = 0 \Rightarrow \hat{\lambda} = \frac{1}{n} \sum_{i=1}^{n} x_i = \bar{x}
\]

Thus the **maximum likelihood estimate** of \(\lambda \) is \(\hat{\lambda} = \bar{x} \).

STEP 4 Check that the second derivative of \(\log L(\lambda) \) with respect to \(\lambda \) is negative at \(\lambda = \hat{\lambda} \).

\[
\frac{d^2}{d\lambda^2} \{\log L(\lambda)\} = -\frac{1}{\lambda^2} \sum_{i=1}^{n} x_i < 0 \quad \text{at} \quad \lambda = \hat{\lambda}.
\]
EXAMPLE 3. Consider the following Accident Statistics Data that record the counts of the number of accidents in each of 647 households during a one year period. The Poisson distribution model is deemed appropriate for these count data.

We wish to estimate the accident rate parameter λ. We have $n = 647$ observations as follows for the frequency with which a given number of accidents occurred in a given time period:

<table>
<thead>
<tr>
<th>Number of accidents</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency</td>
<td>447</td>
<td>132</td>
<td>42</td>
<td>21</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

so that the estimate of λ if a Poisson model is assumed is

$$\hat{\lambda}_{ML} = \bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i = \frac{(447 \times 0) + (132 \times 1) + (42 \times 2) + (21 \times 3) + (3 \times 4) + (2 \times 5)}{647} = 0.465.$$

A plot of $\log L(\lambda)$, with the maximum value and ordinate identified, is depicted below: