Wavelet Analysis of Matrix-Valued Time Series

A. T. Walden & A. Serroukh

Dept. of Mathematics, Imperial College of Science, Technology & Medicine,
180 Queen’s Gate, London SW7 2BZ, U.K.
3/10/2000

Additional Figures

This document provides additional figures to accompany the paper of the same name.
List of Figures

Fig. 1 – Components $\Phi_{1,1}(t), \Phi_{1,2}(t), \Phi_{2,1}(t), \Phi_{2,2}(t)$ of $\Phi(t)$ for the SWX(3) design.

Fig. 2 – Components $\Psi_{1,1}(t), \Psi_{1,2}(t), \Psi_{2,1}(t), \Psi_{2,2}(t)$ of $\Psi(t)$ for the SWX(3) design.

Fig. 3 – Components $A_{1,1}(f), A_{1,2}(f), A_{2,1}(f), A_{2,2}(f)$ of $|\hat{G}(f)|$ for the SWX(3) design.

Fig. 4 – Components $\Phi_{1,1}(t), \Phi_{1,2}(t), \Phi_{2,1}(t), \Phi_{2,2}(t)$ of $\Phi(t)$ for the SWX(7) design.

Fig. 5 – Components $\Psi_{1,1}(t), \Psi_{1,2}(t), \Psi_{2,1}(t), \Psi_{2,2}(t)$ of $\Psi(t)$ for the SWX(7) design.

Fig. 6 – Components $A_{1,1}(f), A_{1,2}(f), A_{2,1}(f), A_{2,2}(f)$ of $|\hat{G}(f)|$ for the SWX(7) design.

Fig. 7 – Components $\Phi_{1,1}(t), \Phi_{1,2}(t), \Phi_{2,1}(t), \Phi_{2,2}(t)$ of $\Phi(t)$ for the SWV(3) design with $\theta = \pi/4$.

Fig. 8 – Components $\Psi_{1,1}(t), \Psi_{1,2}(t), \Psi_{2,1}(t), \Psi_{2,2}(t)$ of $\Psi(t)$ for the SWV(3) design with $\theta = \pi/4$.

Fig. 9 – Absolute value $|\lambda_1[\hat{G}(f)]\lambda_2[\hat{G}(f)]|$ of eigenvalue product in the range $0 \leq f \leq 1/4$ for various combinations of θ_0 and θ_2 for design SWV(5).

Fig. 10 – Components $\Phi_{1,1}(t), \Phi_{1,2}(t), \Phi_{2,1}(t), \Phi_{2,2}(t)$ of $\Phi(t)$ for the SWV(5) design with $\theta_0 = \theta_2 = 2\pi/3$.

Fig. 11 – Components $\Psi_{1,1}(t), \Psi_{1,2}(t), \Psi_{2,1}(t), \Psi_{2,2}(t)$ of $\Psi(t)$ for the SWV(5) design with $\theta_0 = \theta_2 = 2\pi/3$.

Fig. 12 – Components $A_{1,1}(f), A_{1,2}(f), A_{2,1}(f), A_{2,2}(f)$ of $|\hat{G}(f)|$ for the SWV(5) design with $\theta_0 = \theta_2 = 2\pi/3$.

Fig. 13 – 512 values of daily bond yield, starting 1 April 1986, for UK (top), USA (second top), (West) Germany (second bottom) and Japan (bottom).

Fig. 14 – Relative approximation accuracy plotted against the percentage of the total number of DMVWT coefficient matrices used, with retained matrices chosen by size of their Frobenius norm, for the bond yield data and filter designs SWX(3) (solid line), SWX(7) (dotted), SWV(3) (dash-dot) and SWV(5) (dash-dash).

Fig. 15 – As for Fig. 14, but with retained matrices chosen by being at a level of the transform.
Fig. 4

Fig. 5

Fig. 6
Fig. 7

Fig. 8
Fig. 9
Fig. 10

Fig. 11

Fig. 12
Fig. 13

Fig. 14

Fig. 15