
NOTES FOR COMMUTATIVE ALGEBRA M5P55

AMBRUS PÁL

1. Rings and ideals

Definition 1.1. A quintuple (A,+, ·, 0, 1) is a commutative ring with identity, if
A is a set, equipped with two binary operations; addition + and multiplication ·,
and two element 0, 1 ∈ A such that:

(1) the triple (A,+, 0) is an abelian group,
(2) multiplication is associative:

(x · y) · z = x · (y · z),
commutative:

x · y = y · x
and distributive over addition:

x · (y + z) = x · y + x · z,
(3) we have x · 1 = 1 · x = x.

It is rather usual to drop the dot from the notation when we write the product of
elements, that is, to write xy instead of x · y. It is also a usual abuse of notation to
let just the symbol A denote this whole package.

Remarks 1.2. The identity element 1 is uniquely determined by its property in (3).
We have x · 0 = 0, and if 1 = 0 in A, then A has only one element. In this case we
say that A is the zero ring.

Definition 1.3. A ring homomorphism f : A→ B is a mapping f of a ring A into
a ring B such that for all x, y ∈ A we have:

f(x+ y) = f(x) + f(y), f(xy) = f(x)f(y)

and f(1) = 1. The usual properties of ring homomorphisms can be proven from
these assumptions. A subset S of A is a subring of A if S is an additive subgroup,
closed under multiplication and contains 1 ∈ A. In this case the inclusion map
f : S → A is then a ring homomorphism.

Remarks 1.4. The composition of two homomorphisms is a homomorphism. An
isomorphism between rings is a bijective homomorphism; this is the same condition
as asking that the homomorphism has a inverse map which is also a homomorphism.

Definition 1.5. A subset a of A is an ideal of A if a is closed under addition
and Aa = aA = a. (Meaning that ra ∈ a for every r ∈ A and a ∈ a). Shorthand
notation: a/A. The quotient group A/a is then a ring by the obvious multiplication:

(a+ a)(b+ a) = (ab+ a).
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2 AMBRUS PÁL

We call this ring the quotient ring A/a. The map π : A→ A/a defined by π(x) =
x+ a is a surjective ring homomorphism.

Proposition 1.6. There is a bijective correspondence between the ideals b contain-
ing a and the ideals b of A/a. Under this correspondence we get a bijection between
prime ideals in A containing a and prime ideals in A/a.

Proof. For every ideal b containing a let φ(b) = {x+a|x ∈ b}; it is an ideal in A/a.
For every ideal b of A/a let ψ(b) = {x ∈ A|x + a ∈ b}. This is an ideal of A and
contains a. If we can check that φ ◦ ψ = id and ψ ◦ φ = id then we are done. Let b
be an ideal of A/a. Then

φ(ψ(b)) = {x+ a|x ∈ ψ(b)} = {x+ a|x ∈ {x ∈ A|x+ a ∈ b}},

which translates to saying that

φ(ψ(b)) = {x+ a|x+ a ∈ b}.

Therefore we get that φ(ψ(b)) = b. The other composition is similar. Since

A/b ∼= (A/a)/φ(a)

by the third isomorphism theorem, the second claim follows. �

Definition 1.7. If f : A → B is any ring homomorphism, the kernel of f is the
set of all a ∈ A such that f(a) = 0. This is an ideal of A and the image of f is a
subring of B, and f induces a ring isomorphism:

A/Ker(f) ∼= Im(f).

This is the first isomorphism theorem for rings. The notation x ≡ y mod a means
that x − y ∈ a, and it was inspired by number theory, one of the progenitors of
commutative algebra.

2. The most important example: polynomial rings

Let R be a ring; we are going to introduce another ring R[x], the polynomial ring
in the variable x with coefficients in R. As a set R[x] can be described as formal
sums:

a0 + a1x+ a2x
2 + · · ·+ anx

n =

n∑
i=0

aix
i, ai ∈ R,m ∈ N,

where we consider two such sums

(2.0.1) a0 + a1x+ a2x
2 + · · ·+ anx

n and b0 + b1x+ b2x
2 + · · ·+ bmx

m

equal if ai = bi (∀i = 0, 1, . . . ,min(n,m)), and ai = 0, bi = 0 (∀i > min(n,m)), if
ai or bi is defined, respectively. In the ring R the zero is 0, the unity element is 1,
and we define the sum and product of the two elements listed in (2.0.1) above as:

max(n,m)∑
i=0

(ai + bi)x
i and

n+m∑
i=0

 ∑
j+k=i

ajbk

xi,

where ai = 0, bi = 0 for every index i which is bigger than n, respectively m, by
convention, and moreover j, k are non-negative integers. More formally R[x] is the
set of functions:

N −→ R, i 7→ ai,
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such that ai is zero for all but finitely many i. In this description 0 ∈ R[x] is the
identically zero function, 1 is the function 0 7→ 1, i 7→ 0 for every other i ∈ N, and
addition and multiplication for two elements i 7→ ai, i 7→ bi are defined as

i 7→ ai + bi, i 7→
i∑

j=0

aibj−i.

Proposition 2.1. The quintuple (R[x],+, ·, 0, 1) is indeed a ring.

This is easy check directly, but also follows from the principle of extension of
identities (see Lemma 7.1, formulated using polynomials, just to make a vicious
circle!)

Definition 2.2. We define the polynomial ring R in the variables x1, x2, . . . , xn,
denoted by R[x1, x2, . . . , xn], as R[x1][x2] · · · [xn]. Its elements have the usual de-
scription as sums over multi-indexes:

R[x1, x2, . . . , xn] = {
∑

i1,i2,...,in

ai1i2...inx
i1
1 x

i2
2 · · ·xinn |ai1i2...in ∈ R, the sum is finite}.

3. Zero-divisors, nilpotent elements, units

Definition 3.1. A zero-divisor in a ring A is an element x such that there exists a
nonzero element y ∈ A with xy = 0. A ring with no nonzero zero-divisors is called
an integral domain. An element x ∈ A is nilpotent if there exists a natural number
n > 0 such that xn = 0. A nilpotent element is a zero-divisor (unless A = 0) since
xn−1x = 0. A unit in A is an element x such that there exists an element y ∈ A
with xy = 1. This y is unique and is denoted by x−1. The units of A form a group
with respect to multiplication, and this group is denoted by A∗.

Definition 3.2. The set of all multiples ax of an element x ∈ A is called the
principal ideal generated by x and is denoted by (x) traditionally. Note that x is a
unit iff (x) = A = (1). A field is a ring A in which 1 6= 0 and every non-zero element
is a unit. Every field is an integral domain. (If xy = 0, then y = x−1xy = 0).

Proposition 3.3. Let A be a nonzero ring. Then the following are equivalent:

(1) the ring A is a field,
(2) the only ideals in A are (0) = {0} and (1),
(3) every homomorphism of A into a non-zero ring B is injective.

Proof. 1 ⇒ 2: Let a be a nonzero ideal with x ∈ a nonzero. Then x is a unit and
thus a ⊇ (x) = (1).

2 ⇒ 3: Let f : A → B be a homomorphism and B nonzero. Then Ker(f) is an
ideal of A and is either (1) or 0. If it is (1) then f = 0 which is impossible since
f(1) = 1. Thus Ker(f) = 0 and f is injective.

3 ⇒ 1: Let x be a nonzero element of A. Suppose that x is not a unit so
that (x) is not equal to (1). Then A/(x) is a nonzero ring, and hence the natural
homomorphism π : A→ A/(x) is injective. But this means that (x) = Ker(f) = 0
which is a contradiction. �
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4. Prime ideals and maximal Ideals

Definition 4.1. An ideal p / A is prime if p 6= (1) and if xy ∈ p then either x ∈ p
or y ∈ p. Shorthand notation: a /p A. An ideal m in A is maximal if m 6= (1) and
if there is no ideal a such that m ( a ( (1). Shorthand notation: a /m A. The set
of prime ideals of A is denoted by Spec(A).

Lemma 4.2. The ideal p is prime if and only if A/p is an integral domain, and it
is maximal if and only if A/p is a field.

Proof. This first half of the claim is trivial, so we will only give a detailed argu-
ment for the second. Let m be maximal. Then since there is a correspondence
between ideals of A/m and ideals containing m, the maximality of m says that A/m
has no non-trivial ideals and Proposition 3.3 thus guarantees that A/m is a field.
Conversely, if A/m is a field, then by the correspondence again, there are no ideals
between m and A. �

Remark 4.3. Note that this implies that maximal ideals are prime, but not nec-
essarily vice versa. Also note that the zero ideal is prime if and only if A is an
integral domain.

Proposition 4.4. If f : A→ B is a ring homomorphism and b is a prime ideal in
B then f−1(b) is a prime ideal in A.

Proof. The fact that f−1(b) is an ideal is immediate. Let xy ∈ f−1(b). Then
f(xy) ∈ b and therefore f(x)f(y) ∈ b, so either f(x) or f(y) ∈ b, since b is prime,
and hence either x or y ∈ f−1(b). �

Remark 4.5. The corresponding statement about maximal ideals is not true in
general, since if A is any ring that is not a field and F is any field containing A,
then 0 is maximal in F but its inverse image in A is not maximal.

Theorem 4.6. Every ring A 6= 0 has at least one maximal ideal.

The proof will use Zorn’s Lemma which we recall next. Let S be a partially
ordered set (sometimes called a poset), that is, one with a binary relation ≤ that
is reflexive, transitive and anti-symmetric. A subset T of S is called a chain if any
two elements of T are comparable. That is to say that if x, y ∈ T then either x ≤ y
or y ≤ x. An upper bound for a T in S is an element x ∈ S such that t ≤ x for
every t ∈ T . Finally, a maximal element in S is an element x ∈ S so that for all y
such that x ≤ y, we have x = y.

Theorem 4.7 (Zorn’s Lemma). If S is non-empty and every chain T of S has an
upper bound in S then S has at least one maximal element.

Zorn’s Lemma is equivalent to the axiom of choice. We will not prove this, since
it requires some non-trivial tools from set theory.

Proof of Theorem 4.6. Let Σ be the set of all ideals not equal to (1) in A. Order
Σ by inclusion. Σ is not empty, since 0 ∈ Σ. We must show that every chain in Σ
has an upper bound in Σ. Let (aα) be a chain of ideals in Σ, which means that for
each pair of indices α, β we have either aα ⊆ aβ or aβ ⊆ aα.

Let a =
⋃
α aα. We claim that a is an ideal. Indeed, a is clearly closed under

multiplication by A, so we show closure under addition. Let x, y ∈ a. Then
x ∈ aα, y ∈ aβ for some α, β. Then one of these ideals contains the other, since
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they are elements of a chain and we therefore have x, y contained in the same ideal
and thus x+ y ∈ a. Note that 1 6∈ a since 1 6∈ aα for all α. Hence a ∈ Σ and a is an
upper bound of the chain. Thus by Zorn’s Lemma Σ contains a maximal element.
A maximal element in Σ is an ideal that does not contain 1 such that there is no
larger ideal in Σ containing it; a maximal ideal in A. �

Definition 4.8. We say that a ring is local if it has a unique maximal ideal.

Corollary 4.9. If a 6= (1) is an ideal of A, there exists a maximal ideal of A
containing a.

Proof. Note that A/a has a maximal ideal m by the above theorem. Denote by n
the corresponding ideal of A containing a. We claim that n is maximal in A. The
claim is justified as follows: suppose that there is an ideal p strictly between (1)
and n. Then the ideal p = {x + a|x ∈ p} 6= (1) is an ideal of A/a that strictly
contains m which is a contradiction. �

Corollary 4.10. Every non-unit of A is contained in a maximal ideal. (Just let
a = (x)).

Remark 4.11. There exist rings with exactly one maximal ideal, for example fields.
A ring A with exactly one maximal ideal m is called a local ring and the field
k = A/m is called the residue field of A.

Lemma 4.12 (Prime avoidance I). Let A be a ring and I be an ideal of A. Let
p1, p2, , . . . , pn be prime ideals of A such that I ⊆

⋃
i pi.Then I ⊆ pj for some j.

Proof. It will be enough to prove that if I 6⊆ pj for all j then I 6⊆
⋃
i pi. We are

going to prove this by induction on n, the number of prime ideals. For n = 1,
the claim is clear. Assume the result for n − 1 prime ideals. Now suppose that
p1, p2, , . . . , pn are prime ideals of A such that I 6⊆ pj for j = 1, 2, . . . , n. For each
i (where 1 ≤ i ≤ n) we have I 6⊆ pj , for j = 1, 2, . . . , i − 1, i + 1, . . . , n, so by the
induction hypothesis for each i with 1 ≤ i ≤ n we can find an element xi ∈ I such
that xi 6∈

⋃
j 6=i pj . If for some i we have xi 6∈ pi then we are done. Otherwise, we

have xi ∈ pi for all i. Then it is easy to see that

y =

n∑
i=1

x1 · · ·xi−1xi+1 · · ·xn

is an element of I which is not in any pi. This completes the proof. �

Lemma 4.13 (Prime avoidance II). Let A be a ring and p be a prime ideal of A.
Let a1, a2, , . . . , an be ideals of A such that p ⊇

⋂
i ai. Then p ⊇ aj for some j. If

p =
⋂
i ai then p = aj for some j.

Proof. Assume that the first claim is false. Then there is an ai ∈ ai such that ai 6∈ p
for every i. Then

a1a2 · · · an ∈ a1a2 · · · an ⊆ a1 ∩ a2 ∩ · · · ∩ an ⊆ p

which is a contradiction as p is a prime ideal. So the first claim is true. If p =
⋂
i ai

then p ⊆ ai for every i. So if p ⊇ aj for some j then p = aj . Therefore the second
claim follows from the first. �
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5. Nilradical and the Jacobson radical

Proposition 5.1. The set N (A) of all nilpotent elements in a ring A is an ideal
and A/N (A) has no nilpotent elements 6= 0.

Proof. If x is nilpotent then so is ax for all a ∈ A. Now let x, y be nilpotent
elements, say xn, ym = 0. Then

(x+ y)n+m = 0

since each term of the expansion must contain either a power of x greater than n or
a power of y greater than m. To see that A/N (A) has no nilpotent elements, note
that x+N (A) ∈ A/N (A) is nilpotent if and only if xn+N (A) = 0 in A/N (A) which
is equivalent to saying that xn ∈ N (A) which would imply that x ∈ N (A). �

The ideal N (A) defined above is called the nilradical of A. The following propo-
sition gives another definition of N (A).

Proposition 5.2. The nilradical of A is the intersection of all the prime ideals.

Proof. Let R′ denote the intersection all prime ideals of A. Then if f is nilpotent,
then fn = 0 for some n > 0. Since 0 ∈ p for all ideals and p is prime, we have that
f ∈ p for all prime ideals p and hence f ∈ R′.

Conversely, we will show that if f is not nilpotent, then it is not in the intersection
of all prime ideals. Suppose that f is not nilpotent. Then let Σ be the set of all
ideals a such that no power of f is in a. Ordering Σ by inclusion we can apply
Zorn’s Lemma to conclude that it has a maximal element, p. We shall show that p
is prime by showing that x, y 6∈ p implies xy 6∈ p. Indeed, if x, y 6∈ p then p + (x)
and p + (y) properly contain p and thus are not elements of Σ by the maximality
of p. Thus it follows that there exist some n,m so that

fn ∈ p + (x), fm ∈ p + (y),

which clearly implies that fn+m ∈ p + (xy) which implies that xy 6∈ p. Thus p is
prime and does not contain f as required. �

The Jacobson radical J (A) of A is the intersection of all the maximal ideals of
A. It can be characterised as follows:

Proposition 5.3. x ∈ J (A) if and only if 1− xy is a unit in A for all y ∈ A.

Proof. ⇒: Suppose 1−xy is not a unit for some y ∈ A. Then by Corollary 4.10 the
element 1−xy is contained in some maximal ideal m of A. But since x ∈ J (A) ⊆ m
we have 1− xy ∈ m⇒ 1 ∈ m which is absurd.
⇐: Suppose x 6∈ m for some maximal ideal m. Since x and m generate A we have

m + xy = 1 for some elements m ∈ m and y ∈ A. Thus 1 − xy ∈ m contradicting
the fact that 1− xy is a unit. �

If a is any ideal of A then the radical of a is

r(a) = {x ∈ A : xn ∈ a for some n > 0}.

Proposition 5.4. The radical of an ideal a is the intersection of the prime ideals
which contain a.

Proof. Proposition 5.2 applied to A/a tells us that the nilradical of A/a is the
intersection of all prime ideals of A/a which is in correspondence with the set of all
prime ideals containing a. �
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Definition 5.5. Let I be an index set, and for every i ∈ I let Ri be a ring. Then
we may equip the direct product set ∏

i∈I
Ri

with the structure of a ring as follows. We define 0 and 1 as∏
i∈I

0 and
∏
i∈I

1,

respectively, while addition and multiplication are defined coordinate-wise:∏
i∈I

ai +
∏
i∈I

bi =
∏
i∈I

(ai + bi),

∏
i∈I

ai ·
∏
i∈I

bi =
∏
i∈I

(ai · bi).

It is easy to see that with this structure
∏
i∈I Ri is a ring, and it will be called

the direct product of the Ri. The key property of direct products is that the
direct product of homomorphisms is a homomorphism: if hi : R → Ri is a ring
homomorphism (for every i ∈ I), then∏

i∈I
hi : R→

∏
i∈I

Ri

is a ring homomorphism, too.

Remark 5.6. Proposition 5.2 can be reformulated as follows: there is an injective
ring homomorphism:

R/N (R) −→
∏
p/pR

R/p.

This map is just (induced by) the direct product of the quotient maps R → R/p
(where p /p R). Similarly there is an injective ring homomorphism:

R/J (R) −→
∏

m/mR

R/m.

6. Localisation of Rings

Definition 6.1. A subset S of a ring A is called multiplicative (or multiplicatively
closed) if 1 ∈ S, 0 6∈ S, and ab ∈ S whenever a, b ∈ S.

Examples 6.2. Let A be a ring and a ∈ A be such that an 6= 0 for all n ∈ N.
Then S = {1, a, a2, . . . , an, . . .} is a multiplicative set. If p / A is a prime ideal,
then S = A − p is a multiplicative set. For any family {pi}i∈I of prime ideals of
A, the set A −

⋃
i∈I pi is multiplicative. For any ring A, the set of units of A is a

multiplicative set, so is the set of elements of A that are not zero divisors. If I is a
proper ideal of a ring A, then S = 1 + I is a multiplicative set.

Definition 6.3. Let A be a ring and S ⊂ A be a multiplicative set. Define a
relation ∼ on the set A × S by (a, s) ∼ (b, t) if and only if there is a u ∈ S such
that u(at − bs) = 0. It is easy to see that ∼ is an equivalence relation. Denote
the equivalence class of (a, s) under ∼ by a/s = a

s . Let us denote the set of all
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equivalence classes under ∼ by S−1A. Define binary operations of addition and
multiplication on S−1A as follows:

a

s
+
b

t
=
at+ bs

st
,

a

s
· b
t

=
ab

st
.

It is easy to verify that these operations are well-defined and make S−1A into a
ring with zero 0/1 and unity 1/1. Since A is commutative, so is S−1A.

Lemma 6.4. Let A be a ring and S ⊂ A a multiplicative set. There is a ring
homomorphism f : A→ S−1A given by f(x) = x/1. The map f is injective if and
only if S contains no zero divisors.

Proof. It is easy to see that f is a ring homomorphism. If f is injective and S
contains a zero divisor u, then there is a non-zero a ∈ A such that ua = 0. But
then we have a/1 = ua/u = 0/1 = 0, contradicting that f is injective. Therefore S
does not contain zero divisors. Conversely, if S contains no zero divisors, then for
u ∈ S such that u(a− b) = 0 implies a = b. Therefore f is injective. �

Throughout the chapter, the letter f will denote the canonical homomorphism
f : A→ S−1A of Lemma 6.4.

Example 6.5. In general, the homomorphism f is not injective. Let k be a field
and consider the ring A = k[x, y]/(xy) and the multiplicatively closed set S =
{1, x, x2, . . . , xn, . . .}. Note that in this case f(y) = y/1 = xy/x = 0, so f is not
injective. Also f(A) = k[x] and S−1A = k[x, x−1].

The following is the universal property of localisation.

Lemma 6.6. Let A be a ring and S ⊂ A a multiplicative set. Let g : A→ B be a
ring homomorphism such that g(s) is a unit in B for all s ∈ S. Then there exists
a unique ring homomorphism h : S−1A→ B such that g = h ◦ f .

Proof. Define h : S−1A→ B by h(a/s) = g(a)g(s)−1 for all a ∈ A and s ∈ S. Then
h is a well-defined ring homomorphism and clearly, for any a ∈ A, we have

h ◦ f(a) = h(a/1) = g(a)g(1)−1 = g(a).

Moreover if h′ : S−1A → B is such that g = h′ ◦ f , then for any a ∈ A we
have h′ ◦ f(a) = g(a). Since h′ is a ring homomorphism, for any s ∈ S we have
h′(s−1) = h′(s/1)−1 = g(s)−1. Thus h′ = h, proving the uniqueness of h. �

For every ideal I of A let

S−1I = {i/s ∈ S−1A|i ∈ I, s ∈ S}
denote the ideal generated by f(I) in S−1A. The following properties of localisation
of rings are routine verifications and are hence left as exercises.

Proposition 6.7. Let S ⊂ A be a multiplicative subset of a ring A. Let I1, I2, . . . , In
be ideals of A. Then

(a) S−1(I1 + · · ·+ In) = S−1I1 + · · ·+ S−1In,
(b) S−1(I1 · · · In) = S−1I1 · S−1I2 · · ·S−1In,
(c) S−1(

⋂n
i=1 Ii) =

⋂n
j=1 S

−1Ij,

(d) r(S−1I) = S−1(r(I)) for every I / A.
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We shall now see that the ideals of S−1A can described in terms of ideals of A.
Then we characterise the prime ideals of S−1A in terms of prime ideals of A.

Proposition 6.8. Every ideal of S−1A is of the form S−1I for some ideal I of A.

Proof. Let J be any ideal of S−1A. Let f denote the canonical homomorphism of
Lemma 6.4. Put I = f−1(J). Clearly I is an ideal of A. We claim that J = S−1I.
Let a/s ∈ J . Since J is an ideal, s · a/s = a ∈ J , and so a ∈ I. This implies that
J ⊆ S−1I. The other containment is clear as f(I) ⊆ J . Therefore J = S−1I. �

We now prove the most important property of localisation of rings.

Theorem 6.9. The only prime ideals of S−1A are S−1p, where p is a prime ideal
of A such that p∩S = ∅. Thus prime ideals of S−1A are in bijective correspondence
with the prime ideals of A that do not intersect S.

Proof. First, we prove that S−1p is a prime ideal of S−1A for any prime ideal p
not intersecting S. Assume that a/s · b/t ∈ S−1p for some a/s, b/t ∈ S−1A. This
implies that v(abu− cst) = 0 for some u, v ∈ S and c ∈ p. Then ab(uv) = cstv ∈ p
which gives ab ∈ p, as p∩ S = ∅. But this implies that either a ∈ p or b ∈ p, as p is
prime. So S−1p is prime, too.

Also note that f−1(S−1p) = p; if a ∈ A lies in S−1p then there is an s ∈ S such
that sa ∈ p, and hence a ∈ p, as p is a prime and s 6∈ p. So p is uniquely determined
by S−1p. Now let q be a prime ideal of S−1A. Then q = S−1p, where p = f−1(q).
Since the inverse image of a prime ideal under a ring homomorphism is a prime
ideal, we have p ∈ Spec(A). Clearly p ∩ S = ∅ and the claim follows. �

7. Cramer’s rule for commutative rings

Lemma 7.1. Let f(x1, . . . , xn) ∈ Z[x1, . . . , xn]. If f is zero evaluated on any
n-tuple of elements of Z, then it is zero.

Proof. The proof is by induction on the number of variables of f . The case n = 1
is clear, since f vanishes on an infinite set. In general

f(x1, . . . , xn) =
∑
j

fj(x1, . . . , xn−1)xjn,

where the fj are polynomials with integer coefficients. By plugging in any (n− 1)-
uple of elements of Z into the first n− 1 variables we get a polynomial in xn which
vanishes on Z. It is therefore zero, and hence the fj are also zero, by the induction
hypothesis. �

Remark 7.2. This simple claim above can be informally reformulated (or reinter-
preted) as the following principle: a polynomial identity holds for every ring R if
and only if it holds for the integers Z. (Simply apply the lemma to the difference
of the two sides of the identity!) For example the binomial identity:

(x+ y)n =

n∑
j=0

(
n

j

)
xjyn−j

holds in Z, so it is true in every ring. Of course we could prove the claim the
same way for every R as it was done (hopefully) for integers, using induction on
n. But the point of the principle is that we do not need to do it for any particular
identity, if we already convinced ourselves one way or another for the integers. We
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might even use a proof which uses non-algebraic methods, for example analysis,
if we wish. This is a useful point for a lazy mathematician. In the following I
will assume that you know what Cramer’s rule is for (say complex) numbers, and
reformulate it essentially as an identity in all rings. By the above I do not need to
give any proofs!

Definition 7.3. Let R be a commutative ring with unity. The determinant of an
n× n matrix A = (aij)

n
i,j=1 with coefficients in R, where n is a positive integer, is

the expression:

det(A) =
∑
π∈Sn

sgn(π)a1π(1)a2π(2) · · · anπ(n),

where Sn is the permutation group on the letters {1, 2, . . . , n}, and for every π ∈ Sn
the symbol sgn(π) = ±1 denotes the sign of π, considered as an element of R.

The i, j minor of A is, by definition, the determinant Mij of the (n−1)× (n−1)
matrix that results from deleting the i-th row and the j-th column of A. A basic
fact is the expansion formula:

Theorem 7.4. Let A = (aij)
n
i,j=1 be as above and let i ∈ {1, 2, . . . , n}. Then its

determinant det(A) is given by:

det(A) = (−1)i+1ai1Mi1 + (−1)i+2ai2Mi2 + · · ·+ (−1)i+nainMin.

This is the expansion with respect the i-th row of the matrix A. There is a
similar expansion with respect to columns, which can be derived as follows. The
transpose AT of the matrix A is AT = (aji)

n
i,j=1. Since det(BT ) = det(B) for

every square matrix B, we get as an immediate corollary of the theorem above the
following result:

Theorem 7.5. Let A = (aij)
n
i,j=1 be as above and let i ∈ {1, 2, . . . , n}. Then its

determinant det(A) is given by:

det(A) = (−1)i+1a1iM1i + (−1)i+2a2iM2i + · · ·+ (−1)i+naniMni.

Every matrix which has either two identical rows or two identical columns
has zero determinant. Hence the two results above imply that expansions in the
”wrong” way are zero:

Theorem 7.6. Let A = (aij)
n
i,j=1 be as above and let i, j ∈ {1, 2, . . . , n} such that

i 6= j. Then we have:

0 = (−1)j+1ai1Mj1 + (−1)j+2ai2Mj2 + · · ·+ (−1)j+nainMjn

= (−1)j+1a1iM1j + (−1)j+2a2iM2j + · · ·+ (−1)j+naniMnj .

These results can be expressed in one elegant statement. The Cramer adjoint of
A is the matrix A∨ = ((−1)i+jMji)

n
i,j=1. Cramer’s rule is the following

Theorem 7.7. We have:

A ·A∨ = A∨ ·A = det(A)In×n,

where · denotes the usual matrix multiplication and In×n is the n×n identity matrix.
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8. Modules

Definition 8.1. Let A be a commutative ring with unity. A module over A is
an abelian group (M, 0,+) with additional structure · : A ×M → M (called the
A-multiplication) such that the following hold for every λ, µ ∈ A and x, y ∈M :

λ · (x+ y) = λ · x+ λ · y,
µ · (λ · x) = (µλ) · x,

1 · x = x,

(µ+ λ) · x = µ · x+ λ · x.

Examples 8.2. 1) Any ideal of A is an A-module. In particular, A itself is an
A-module. 2) If A is a field k then an A-module is precisely a k-vector space. 3)
If A = Z then a Z-module is the same as an abelian group. (Just define the action
nx = x+ · · ·+ x). 4) If A = k[x] where k is a field, then an A-module is a k-vector
space V with a linear transformation T . Define f · : V → V by fv = f(T )(v) (for
every v ∈ V ).

Definition 8.3. Let M and N be A-modules. We say that a function f : M → N
is an A-module homomorphism if f(x+y) = f(x)+f(y) and f(ax) = af(x). If A is
a field, then these are just the properties of a linear transformation. Note that the
composition of A-module homomorphisms is again an A-module homomorphism.
Thus by defining addition and multiplication in an obvious way, we can turn the set
of all A-module homomorphisms from M to N into an A-module. This A-module
is denoted HomA(M,N). Sometimes we might just write Hom(M,N) and you’ll
have to guess what the ring is.

Definition 8.4. A submodule N of M is a subgroup of M which is closed under
multiplication by elements of A. The abelian groupM/N then inherits an A-module
structure by a(x + N) = ax + N . This is well defined, and as for ideals, there
is a bijective order preserving correspondence between submodules of M/N and
submodules of M which contain N . We define the sum and intersection of modules
in the same way we did for ideals of rings. We define (N : M) = {a ∈ A|aM ⊆ N}.
This is an ideal of A. In particular, (0 : M) = {a ∈ A|aM = 0} is called the
annihilator of M and we denote it by Ann(M).

Definition 8.5. The kernel of a module homomorphism is the set of all x ∈ M
such that f(x) = 0. It is a submodule of M . The image of f is the set of all
f(x) ∈ N with x ∈ M . The cokernel of f is Coker(f) = N/Im(f). If M ′ is a
submodule of M and M ′ ⊆ Ker(f) then we have an induced map f : M/M ′ → N
given by the rule f(x + M ′) = f(x). This is well defined (you should check this)
and in particular if M ′ = Ker(f) then by the first isomorphism theorem we have
that M/Ker(f) = Im(f).

Definition 8.6. We say that an A-module M be a finitely generated if there
is a finite set of elements m1,m2, . . . ,mn of M such that every element of M
can be written as an A-linear combination of these. In this case we say that
m1,m2, . . . ,mn generates M . An example of a finitely generated A-module is
A⊕n = {(a1, a2, . . . , an)|ai ∈ A}, equipped with coordinate-wise addition and A-
multiplication. In fact every finitely generated A-module is a quotient of A⊕n for
some n.
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Lemma 8.7. Let A be a ring, let M be a finitely generated A-module and let I be
an ideal of A such that IM = M . Then there is an a ∈ I such that (1− a)M = 0.

Proof. If M = 0 then there is nothing to prove. So let M 6= 0 be generated by
m1,m2, . . . ,mn. Since IM = M , there exist xij ∈ I for 1 ≤ i, j ≤ n such that

1− x11 −x12 . . . −x1n

−x21 1− x22 . . . −x2n

...
...

. . .
...

−xn1 −xn2 . . . 1− xnn

 ·

m1

m2

...
mn

 =


0
0
...
0

 .

Multiplying the above relation on the left by the adjoint T∨ of the square matrix
T on the left we get

det(T )


m1

m2

...
mn

 =


0
0
...
0


using Cramer’s rule, so det(T )M = 0. But since T ≡ In×n mod I, we have
det(T ) ≡ 1 mod I, so det(T ) = 1−a for some a ∈ I. This completes the proof. �

Corollary 8.8 (Nakayama’s lemma). Let A be a ring and let M be a finitely
generated A-module. Suppose that I is an ideal of A such that I ⊆ J (A). If
IM = M then M = 0.

Proof. From lemma above there is an a ∈ I such that (1− a)M = 0. But a lies in
J (A), so 1− a is a unit of A. Therefore we get that M = 0. �

Second proof. Let m1,m2, . . . ,mn be a minimal generating set for M (as an A-
module). Since IM = M there are a1, a2, . . . , an ∈ I such that

m1 = a1m1 + a2m2 + · · ·+ anmn.

Since a1 ∈ I ⊆ J (A), we have 1 − a1 ∈ A∗, so by multiplying with its inverse we
get that

m1 = (1− a1)a2m2 + · · ·+ (1− a1)anmn.

Therefore m2, . . . ,mn is still a generating set, which is a contradiction unless n = 0,
and hence M = 0. �

9. Localisation of Modules

Definition 9.1. Let A be a ring, let S ⊂ A be a multiplicative set and let M
be an A-module. Define a relation ∼ on the set M × S by by (m, s) ∼ (n, t) if
and only if there is a u ∈ S such that u(tm − sn) = 0. It is easy to see that
∼ is an equivalence relation. Denote the equivalence class of (m, s) under ∼ by
m/s = m

s . Let us denote the set of all equivalence classes under ∼ by S−1M . Define

binary operations of addition + : S−1M × S−1M → S−1M and multiplication
· : S−1A× S−1M → S−1M on S−1M as follows:

a

s
+
b

t
=
at+ bs

st
,

a

s
· b
t

=
ab

st
.
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It is easy to verify that these operations are well-defined and make S−1M into an
S−1A-module with zero 0/1.

Definition 9.2. Let A be a ring and p be a prime ideal of A. Then S = A− p is
a multiplicative set. Then the ring S−1A is called the localisation of A at p and is
denoted by Ap.

We shall now see that Ap is a local ring; that is why this process is called
localisation.

Theorem 9.3. Let A be a ring and p be a prime ideal of A. Then a ∈ Ap is a unit
if and only if a 6∈ pAp. Therefore Ap is a local ring with unique maximal ideal pAp.

Proof. Suppose a/s ∈ Ap is a unit. Then there exists b/t ∈ Ap such that a/s ·
b/t = 1, so for some u ∈ S (here S = A − p) we have u(ab − st) = 0. Therefore
uab = ust ∈ S, and so a 6∈ p. Conversely if a/s 6∈ pAp, then a ∈ S, so a/s ∈ A∗p.
Therefore pAp is the unique maximal ideal of Ap and the ring Ap is local. This
completes the proof. �

Example 9.4. Z(p) = {a/b ∈ Q|a, b ∈ Z, p 6 |b}, where p is a prime number, is an
example of localisation of Z at the prime ideal (p).

The following result illustrates the use of localisation at prime ideals to obtain
a property of modules.

Proposition 9.5. Let A be a ring and let M be an A-module. Then M = 0 if and
only if Mp = 0 for all maximal ideals p of A.

Proof. (⇒) follows trivially. We shall prove the nontrivial implication (⇐). Sup-
pose that M 6= 0. Choose any nonzero x ∈M . Let I = Ann(x) = {a ∈ A|ax = 0}.
Clearly, 1 6∈ I, so I is proper. Therefore I is contained in a maximal ideal p of
A. We claim that Mp 6= 0. Indeed if Mp were 0, we would have x = 0 in Mp, so
then we would find an element u ∈ A− p with ux = 0, giving that u ∈ I. But this
contradicts that I ⊆ p. Hence the proposition follows. �

10. Chain conditions

Lemma 10.1. Let Σ be a poset. Then the following are equivalent:

(1) Any nonempty subset of Σ has a maximal element.
(2) Any ascending chain of elements of Σ is stationary.

Proof. (⇒): let

x1 ≤ x2 ≤ · · · ≤ xn ≤ · · ·
be an ascending chain of elements of Σ. The set of these has a maximal element,
say xn. Then xn = xn+1 = . . . and hence the chain is stationary. (⇐): let S be
nonempty subset of Σ which has no maximal element. We are going to construct
an ascending chain of elements of S recursively:

x1 < x2 < · · · < xn < · · ·

as follows. Let x1 be any element of S. If the first n elements are already chosen, let
xn+1 ∈ S be an element larger than xn. This is possible because S has no maximal
element. This is a contradiction so the claim follows. �
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Definition 10.2. Let A be a ring. An A-module M is called Noetherian if every
ascending chain of A-submodules of M is stationary. It is called Artinian if every
descending chain of A-submodules of M is stationary. A ring A is called a Noe-
therian (Artinian) ring if A is Noetherian (respectively Artinian) as an A-module.

Proposition 10.3. Let A be a ring and M be an A-module. Then the following
are equivalent:

(1) The module M is Noetherian.
(2) Every A-submodule of M is finitely generated.

Proof. (⇒): let N be A-submodule of M which is not finitely generated. We are
going to construct an ascending chain of finitely generated A-submodules of N
recursively:

N1 ⊂ N2 ⊂ · · · ⊂ Nn ⊂ · · ·
as follows. Let N1 be the zero module. If the first n submodules are already
chosen, let xn ∈ N be an element not in Nn. This is possible because N is not
finitely generated. Let Nn+1 be generated by Nn and xn (i.e. the smallest A-
submodule containing both). This module is also finitely generated (as Nn is).
This is a contradiction.

(⇐): let

M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · ·
be an ascending chain of A-submodules of M . The union N of these A-submodules
is also an A-submodule, and hence it is generated by a finite set m1,m2, . . . ,mr.
For some index n we have m1,m2, . . . ,mr ∈ Mn already. Then m1,m2, . . . ,mr

generates Mn and hence Mn = N . So Mn = Mn+1 = . . . and hence the chain is
stationary. �

Proposition 10.4. Let A be a ring, let M be an A-module and N be an A-
submodule of M . Then M is Noetherian (Artinian) if and only if N and M/N
are Noetherian (respectively Artinian).

Proof. We will give the proof in the Noetherian case, the argument in the Ar-
tinian case is the same. Suppose that M is Noetherian. An ascending chain of
A-submodules of N is also an ascending chain of A-submodules of M . Also, an
ascending chain of A-submodules of M/N corresponds to an ascending chain of A-
submodules of M containing N . Hence it follows that N and M/N are Noetherian.

Now assume that N and M/N are Noetherian. Consider an ascending chain of
submodules of M :

M1 ⊆M2 ⊆ · · · ⊆Mn ⊆ · · ·
Since the ascending chain

(M1 +N)/N ⊆ (M2 +N)/N ⊆ · · · ⊆ (Mn +N)/N ⊆ · · ·

is stationary, there is an n0 ∈ N such that (Mn + N)/N = (Mn0
+ N)/N for all

n ≥ n0. But the ascending chain

M1 ∩N ⊆M2 ∩N ⊆ · · · ⊆Mn ∩N ⊆ · · ·

of submodules of N must be stationary, too, so there is an n1 ∈ N such that
Mn ∩N = Mn1

∩N for all n ≥ n1. Taking n2 = max{n0, n1}, it is easy to see that
Mn = Mn2

for all n ≥ n2. Therefore it follows that M is Noetherian. �
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Corollary 10.5. Let A be a Noetherian (Artinian) ring and let M be a finitely
generated A-module. Then M is Noetherian (respectively Artinian).

Proof. Because M is the quotient of a finitely generated free A-module A⊕n, it will
be enough to prove that the latter is Noetherian (respectively Artinian). But this
follows from the proposition above by induction on n. �

Corollary 10.6. Let A be a ring and let M be an A-module. Let

0 = M0 ⊆M1 ⊆ · · · ⊆Mn = M

be a finite chain of A-submodules. Then M is Noetherian (Artinian) if and only if
Mi+1/Mi are Noetherian (respectively Artinian) for each i.

Proof. This follows from induction from Proposition 10.4. �

Lemma 10.7. Let A be a Noetherian ring and S ⊂ A be a multiplicative set. Then
S−1A is Noetherian.

Proof. Let J be a non-empty set of ideals of S−1A. Let φ : A → S−1A be the
homomorphism given by a 7→ a

1 . Consider the collection {φ−1(I)|I ∈ J} of ideals

of A. Since A is Noetherian, this has a maximal element, say φ−1(I0). Then
I0 = S−1(φ−1(I0)) is a maximal element of J . Therefore S−1A is Noetherian. �

11. Primary Decomposition

Definition 11.1. A proper ideal q of a ring R is primary if for all x, y ∈ R such
that xy ∈ q implies that either x ∈ q or yn ∈ q for some n ∈ Z.

Proposition 11.2. Let q be an ideal in a ring R. If r(q) = m is a maximal ideal,
then q is primary. In particular, any power of a maximal ideal is primary.

Proof. Since r(q) is the intersection of all prime ideals containing q, if this inter-
section is a maximal ideal m, then m is the unique prime ideal containing q and
R/q is a local ring with N (R/q) = J (R/q) = m/q. In such a ring an element is
a zero-divisor if and only if it is not a unit, and the latter holds if and only if the
element is nilpotent. Therefore q is primary. Since for a maximal ideal m we have
r(mn) = m, the second claim follows. �

Proposition 11.3. If q is a primary ideal, then its radical r(q) is a prime ideal,
the smallest prime ideal containing q.

Proof. Let xy ∈ r(q), so that (xy)m = xmym ∈ p for some m ∈ Z. If xm is in q then
x ∈ r(q), so assume that xm is not in q. Then ym is a zero divisor in R/q, so there
exists n ∈ Z such that (ym)n ∈ q, as q is primary, and then y ∈ r(q). The second
statement holds for any ideal I whose radical is prime, since r(I) is the intersection
of all prime ideals containing I. �

A primary ideal is said to be p-primary if its radical is the prime ideal p.

Lemma 11.4. If q1, . . . , qn are p-primary ideals, then q =
⋂n
i=1 qi is a p-primary

ideal, too.

Proof. Let x, y be elements of the ring R such that xy ∈ q and x ∈ R − q. Then
there is an index j such that x is not in qj , so because the latter is a primary ideal
we get that y is in the radical of qj , which is p. This implies that for all 1 ≤ i ≤ n
there exists ai ∈ N such that yai ∈ qi, and then ymax{ai} ∈

⋂n
i=1 qi, so q is primary.
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As we saw in the exercises we have r(q) = r(
⋂n
i=1 qi) =

⋂n
i=1 r(qi) = p, so q is

p-primary, too. �

Let R be a ring and I an ideal of R. We say that I is irreducible if for any two
ideals J,K of R such that I = J ∩K we have either I = J or J = K.

Proposition 11.5. (a) A prime ideal is irreducible. (b) An irreducible ideal in a
Noetherian ring is primary.

Proof. (a) Let p be a prime ideal, and write p = I ∩ J . Since then p ⊇ IJ , by
the second prime avoidance lemma we have p ⊇ I or p ⊇ J . Without the loss of
generality we may say that p ⊇ I. Then p = I ∩J ⊇ I, so that we must have I = p.

(b) By passage to the quotient, we may assume that the 0 ideal is irreducible
and we must show that it is primary. So suppose xy = 0 and x 6= 0. Consider the
chain of ideals

Ann(y) ⊆ Ann(y2) ⊆ · · · ⊆ Ann(yn) ⊆ · · ·
Since R is Noetherian, this chain stabilises, so there exists an n such that Ann(yn) =
Ann(yn+k) for all k. We claim that (x) ∩ (yn) = 0. Indeed, if a ∈ (x) then ay = 0,
and if a ∈ (yn) then a = byn for some b ∈ R, and hence byn+1 = ay = 0. So
b ∈ Ann(yn+1) = Ann(yn), therefore a = byn = 0. Since the ideal (0) is irreducible,
we must then have yn = 0, and this shows that (0) is primary. �

Let R and I be as above. A primary decomposition of I is an expression of I as
a finite intersection of primary ideals, say I =

⋂n
i=1 qi.

Theorem 11.6 (Noether). Any proper ideal in a Noetherian ring admits a primary
decomposition.

Proof. Let I be a proper ideal in the Noetherian ring R. We claim I is a finite
intersection of irreducible ideals; by part (b) of Proposition 11.5 this gives the
desired result. To see this: suppose that the set of proper ideals which cannot
be written as a finite intersection of irreducible ideals is nonempty, and choose a
maximal element I. Then I is reducible, so we may write I = J ∩K where each of
J and K is strictly larger than I. But being strictly larger than I each of J and
K can be written as a finite intersection of irreducible ideals, and hence so can I,
which is a contradiction. �

Lemma 11.7. Let R be ring, let q / R be a p-primary ideal, and let x ∈ R.

(a) If x ∈ q then (q : (x)) = R.
(b) If x 6∈ q then (q : (x)) is p-primary.
(c) If x 6∈ p then (q : (x)) = q.

Proof. (a) If x ∈ q then 1 · (x) = (x) ⊆ q so 1 ∈ (q : (x)). (b) If y ∈ (q : (x)),
then xy∈q. By assumption x 6∈ q, so yn ∈ q for some n and thus y ∈ r(q) = p. So
q ⊆ (q : (x)) ⊆ p; taking radicals we get r((q : (x))) = p. Moreover, if yz ∈ (q : (x))
with y 6∈ r(q : (x)) = p, then xyz = y(xz) ∈ q, so xz ∈ q, thus z ∈ (q : (x)). We get
that (q : (x)) is primary.

(c) In any case q ⊆ (q : (x)). If x 6∈ p = r(q) and y ∈ (q : (x)), then xy ∈ q; since
no power of x is in q, we must have y ∈ q. �

We say that a primary decomposition I =
⋂n
i=1 qi of I is minimal if (i) the r(qi)

are distinct, and (ii) we have qi 6⊇
⋂
j 6=i qj for every index i. Clearly ever ideal
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which has a primary decomposition has a minimal primary decomposition, too, by
Lemma 11.4.

Theorem 11.8 (First Uniqueness Theorem). Let I =
⋂n
i=1 qi be any minimal

primary decomposition of the ideal I. Let pi = r(qi). Then the ideals pi are
precisely the prime ideals of the form r((I : (x))) as x ranges through elements of R.
In particular, they are independent of the choice of minimal primary decomposition.

Proof. For every x ∈ R we have (I : (x)) = (
⋂n
i=1 qi : (x)) =

⋂n
i=1(qi : (x)), so

r((I : x)) =
⋂n
i=1 r(qi : (x)) =

⋂
x 6∈qi

pi by two of the exercises. So if r(I : (x))

is prime then r(I : (x)) = pi for some i by the second prime avoidance lemma.
Conversely, for each i, by the minimality of the decomposition, there exists xi 6∈ qi
with xi ∈

⋂
j 6=i qj and then Lemma 11.7 implies r(I : (xi)) = pi. �

12. Artinian Rings and Modules

Definition 12.1. Let A be a ring and let M be an A-module. We say that M
is a simple A-module (or just simple) if it is not the zero module and every A-
submodule of A is either 0 or M itself. A composition series of M of length n is a
descending chain:

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0

such that the quotient modules Mi/Mi+1 are all simple.

Proposition 12.2. For an A-module M the following conditions are equivalent:

(1) The module M is both Noetherian and Artinian.
(2) The module M has a composition series.

Proof. (⇒): We are going to construct a composition series

M = M0 ⊃M1 ⊃ · · · ⊃Mn = 0

as follows. Since M is Noetherian, there must exist a proper maximal A-submodule,
say M1 (or M is zero and the claim is trivial). If M1 is the zero module, we have
a composition series. Otherwise it has a proper maximal A-submodule, say M2.
We continue in this way: since M is also Artinian, the process must eventually
terminate, yielding a composition series. (⇐): as every simple module is Noetherian
and Artinian, this follows easily from Corollary 10.6. �

Proposition 12.3. If M has a composition series of length n, every composition
series of M has length n.

Proof. Induction on the length of a composition series. �

The common length of all composition series of M is called the length of M , and
it is usually denoted by l(M). We say that a module M has finite length if M has
a composition series. The following claim is easy:

Proposition 12.4. If

0 // K // M // N // P // 0.

is an exact sequence of R-modules with finite length, then

l(K) + l(N) = l(M) + l(P ). �
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Examples 12.5. 1. A field k is an Artinian ring. 2. A finite dimensional vector
space over a field k is an Artinian k-module. 3. A finite module is Artinian. In
particular Z/nZ is an Artinian Z-module. 4. If k is a field and A = k[x], then

(x) ⊃ (x2) ⊃ · · · ⊃ (xn) ⊃ · · ·
is an infinite strictly descending chain of ideals of A. Thus A is not Artinian.

Example 4 above shows that the natural analogue of Hilbert’s Basis Theorem is
not true for Artinian rings.

Lemma 12.6. An Artinian integral domain is a field.

Proof. Let A be an Artinian integral domain and let x ∈ A be nonzero. Since the
decreasing sequence of ideals

(x) ⊇ (x2) ⊇ · · · ⊇ (xn) ⊇ · · ·
must be stationary, there exists an n ∈ N such that (xn) = (xn+1). Since (xn) =
(xn+1) we have xn = xn+1y for some y ∈ A. Since A is a domain and x 6= 0, we
get xy = 1. It follows that A is a field. �

Corollary 12.7. In an Artinian ring every prime ideal is maximal.

Proof. Let A be an Artinian ring and p be a prime ideal of A. Then A/p is an
Artinian integral domain, which has to be a field by the above. Hence p must be a
maximal ideal of A. �

We have the following immediate

Corollary 12.8. If A is an Artinian ring, then the nilradical of A is the same as
the Jacobson radical of A. �

Lemma 12.9. Let A be an Artinian ring. Then A has only finitely many maximal
ideals.

Proof. Suppose that the claim is false; then we can find an infinite set {mn|n ∈ N}
of distinct maximal ideals of A. Since the descending sequence of ideals

m1 ⊇ m1 ∩m2 ⊇ · · · ⊇ m1 ∩m2 ∩ · · · ∩mn ⊇ · · ·
must be stationary, for some n ∈ N we have

m1 ∩m2 ∩ · · · ∩mn = m1 ∩m2 ∩ · · · ∩mn+1 ⊆ mn+1.

Since mn+1 is a prime ideal, by the second prime avoidance lemma mn+1 contains
mi for some 1 ≤ i ≤ n. Because mi is maximal, we get mn+1 = mi, which is a
contradiction. �

We say that an ideal I is nilpotent if there is a natural number n such that
In = 0.

Lemma 12.10. Let A be an Artinian ring. Then the nilradical of A is nilpotent.

Proof. The descending chain

N (A) ⊇ N (A)2 ⊇ · · · ⊇ N (A)n ⊇ · · ·
is stationary, so for some k ∈ N we have N (A)k = N (A)l for all l ≥ k. We claim
that N (A)k = 0. Assume the contrary. Then the collection

C = {I / A|I is an ideal such that IN (A)k 6= 0}
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is nonempty (as N (A)l ∈ C for all l), and has a minimal element, say I, since A is
Artinian. Since IN (A)k 6= 0, there exists an element x ∈ I such that xN (A)k 6= 0.
The minimality of I in C implies that I = (x). Also, (xN (A)k)N (A)k = xN (A)k 6=
0, and hence xN (A)k ⊆ I. The minimality of I again implies that (x)N (A)k = I.
Therefore (xN (A)k) = (x), so x = xy for some y ∈ N (A)k. Since y is nilpotent we
have yr = 0 for some r, and hence x = xy = xy2 = · · · = xyr = 0. We get that
I = (x) = 0, a contradiction. So N (A)k = 0 and N (A) is nilpotent. �

Lemma 12.11. For a vector space V over a field k, the following are equivalent:

(1) The vector space V is finite dimensional over k.
(2) The vector space V is a Noetherian k-module.
(3) The vector space V is an Artinian k-module.

Proof. (1) ⇒ (2): If V is a finite dimensional vector space over k then every k-
submodule of V is a subspace of V which is finite dimensional and hence, finitely
generated. Therefore, V is a Noetherian k-module. (2)⇒ (3): If V is a Noetherian
k-module, then V is finitely generated, so it has a finite basis. Given any nonempty
collection C of k-submodules (that is, vector subspaces) of V , we can choose a
subspace of least dimension, which serves as a minimal element of C. Therefore V
is Artinian. (3) ⇒ (1): Suppose that V is Artinian but not a finite dimensional
vector-space over k. Then we can find an infinite subset {en|n ∈ N} of linearly
independent vectors in V . Then

〈e1, e2, . . . , en, . . .〉 ⊇ 〈e2, e3, . . . , en, . . .〉 ⊇ · · · ⊇ 〈em, em+1, . . . , en, . . .〉 ⊇ · · ·

is an infinite strictly decreasing chain of k-submodules of V , a contradiction. This
completes the proof. �

Lemma 12.12. Let A be a ring and m1,m2, . . . ,mn be maximal ideals of A (not
necessarily distinct). Suppose that m1m2 · · ·mn = 0. Then A is Noetherian if and
only if A is Artinian.

Proof. First assume that A is Noetherian. Consider the finite descending chain:

m1 ⊇ m1m2 ⊇ · · · ⊇ m1m2 · · ·mn = 0

Let Mi = m1m2 · · ·mn. Since A is noetherian, the module Mi/Mi+1 is also Noe-
therian for all i by Proposition 10.4. But Mi/Mi+1 is an A/mi+1 module, that is,
a vector space over the field A/mi+1. Therefore Mi/Mi+1 is Artinian by Lemma
12.11. Using Propostion 10.4 again we get that A is Artinian. The other implication
can be proved similarly. �

Definition 12.13. The Krull dimension of a ring A is the supremum of all natural
numbers n such that there is an ascending chain:

p0 ⊂ p1 ⊂ · · · ⊂ pn

of proper prime ideals of A. Therefore it is a natural number or ∞. It is denoted
by dim(A). Clearly dim(A) = 0 if and only if every prime ideal of A is maximal.

We are now set to prove the main equivalent characterisation of Artinian rings.
A noetherian ring may not be Artinian; for example, Z is Noetherian but not
Artinian. The next theorem will imply that an Artinian ring is always Noetherian,
so the descending chain condition is stronger than the ascending chain condition.
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Theorem 12.14. A ring A is Artinian if and only if A is Noetherian and dim(A) =
0.

Proof. Suppose that A is an Artinian ring. Then every prime ideal of A is maximal
by Corollary 12.7, and hence dim(A) = 0. By Lemma 12.9 the ring A has only
finitely many maximal ideals, say m1,m2, . . . ,mn. By Corollary 12.8 and Lemma
12.10 we also know that

m1m2 · · ·mn ⊆ m1 ∩m2 ∩ · · · ∩mn = J (A) = N (A)

is nilpotent. So there is a k ∈ N such that (m1m2 · · ·mn)k = 0. This along with
Lemma 12.12 implies that A is Noetherian.

For the converse we will need the analogue of Lemma 12.10: the nilradical in a
Noetherian ring A is nilpotent. Indeed the nilradical is finitely generated: N (A) =
(x1, x2, . . . , xn). There is a positive integer m such that xmi = 0 for every index i.
Every element of N (A) is an R-linear combination of the xi, so its mn-th power is
zero, too, by the pigeonhole principle. Also note that every ideal n / A contains a
power of its radical. Because A is Noetherian, so is the quotient ring A/n, so by
the above its nilradical is nilpotent, and the remark follows. By Noether’s theorem
(0) has a primary decomposition. Because A has zero dimension, every prime ideal
appearing in this decomposition is maximal. By the above the product of some
power of these maximal ideals is (0). This along with Lemma 12.12 implies that A
is Artinian. �

The next result is called the structure theorem for Artinian rings:

Theorem 12.15. An Artinian ring A is the finite direct product of Artinian local
rings.

Definition 12.16. Two ideals a, b of a ring R are coprime if a + b = R.

Now let R be a ring and let a1, a2, . . . , an be ideals of R. Consider the homo-
morphism:

φ : R −→
n∏
i=1

(R/ai)

given by the rule x 7→ (x+ a1, x+ a2, · · · , x+ an). We will need the following

Lemma 12.17. (i) If ai and aj are coprime whenever i 6= j, then
∏

ai =
⋂
ai.

(ii) The map φ is surjective if and only if ai and aj are coprime whenever i 6= j.
(iii) The map φ is injective if and only if

⋂
ai = (0).

The proof is left as an exercise.

Proof of Theorem 12.15. Let m1,m2, . . . ,mn be the maximal ideals of A (all pair-
wise different, of course). We saw that

∏n
i=1 m

k
i = 0 for some k > 0. Clearly the

ideals mi and mj are coprime whenever i 6= j, so there is an x ∈ mi and y ∈ mj
such that x+ y = 1. Then

1 = 12k = (x+ y)2k ∈ mki + mkj

by the binomial theorem. Therefore the ideals mki and mkj are coprime whenever

i 6= j, so
⋂
mki =

∏
mki = 0, and hence the map

φ : A −→
n∏
i=1

(A/mki ), x 7→ (x+ mk1 , x+ mk2 , · · · , x+ mkn)



NOTES FOR COMMUTATIVE ALGEBRA M5P55 21

is an isomorphism by the above. Now we only need to show that A/mki is a local
Artinian ring. As the quotient of an Artinian ring, it is Artinian. Note that in
A/mki the nilradical is mi/m

k
i , since the k-th power of any element of this ideal is

zero, but it is also a maximal ideal. As the nilradical is the intersection of all prime
ideals, all prime ideals of A/mki contain mi/m

k
i , but the latter is maximal, so they

are all equal to it. So this ring has a unique prime, and hence maximal ideal. �

13. Graded rings, graded modules and the Artin–Rees lemma

Definition 13.1. A graded ring is a ring R with a family (Rn)n∈N of subgroups
of the additive group of R such that R =

⊕∞
n=0Rn and RmRn ⊆ Rn+m for every

m,n ∈ N. A graded R-module over such an R is an R-module M with a family
(Mn)n∈N of subgroups of M such that M =

⊕∞
n=0Mn and RmMn ⊆ Mn+m for

every m,n ∈ N. We say that an x ∈M is homogeneous of degree n if x ∈Mn.

Example 13.2. Consider the polynomial ring R[x1, . . . , xr] over the ring R. If

we set Rn to be the R-module generated by {xi11 · · ·xirr | i1 + · · · + ir = n}, then
R[x1, . . . , xr] =

⊕∞
n=0Rn and the family (Rn)n∈N equips R[x1, . . . , xr] with the

structure of a graded ring. If R, (Rn)n∈N is a graded ring, then R with the family
(Rn)n∈N is a graded R-module.

Definition 13.3. Let R be any ring and let a / R. An a-filtration of an R-module
M is an infinite descending chain:

M = M0 ⊇M1 ⊇ · · · ⊇Mn ⊇ · · ·

of R-submodules of M such that aMn ⊆ Mn+1 for every n ∈ N. We say that an
a-filtration as above is stable if aMn = Mn+1 for sufficiently large n.

Notation 13.4. Let R and a / R be as above. Then we may form the graded
ring Ra =

⊕∞
n=0 a

n (where a0 = R by convention). If M is an R-module equipped
with an a-filtration (Mn)n∈N then Ma =

⊕∞
n=0Mn is a graded Ra-module, as

amMn ⊆Mm+n.

Lemma 13.5. Let R be a Noetherian ring, let a/R, let M be a finitely generated R-
module, and let (Mn)n∈N be an a-filtration of M . Then the following are equivalent:

(i) Ma is a finitely generated Ra-module,
(ii) the a-filtration (Mn)n∈N is stable.

Proof. As R is Noetherian, the ideal a is finitely generated, for example a =
〈x1, . . . , xr〉. Then Ra is finitely generated by x1, . . . , xr as an R-algebra, so it
is Noetherian by Hilbert’s basis theorem. Since R is Noetherian and M is finitely
generated, we get that M is Noetherian. Therefore Mn is finitely generated for
each n. Hence so is each Qn = ⊕nr=0Mr. The Ra-submodule

Ma
n = M0 ⊕ · · · ⊕Mn ⊕ aMn ⊕ a2Mn ⊕ · · · arMn ⊕ · · ·

generated by Qn in Ma is finitely generated as an Ra-module. The Ma
n form an

ascending chain, whose union is Ma. Since Ra is Noetherian, we get that Ma is
finitely generated as an Ra module⇔ it is Noetherian⇔ the chain Ma

n is stationary
⇔ we have Ma = Ma

m for some m ∈ N ⇔ we have Mm+k = akMm for all k ∈ N ⇔
the filtration is stable. �
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Theorem 13.6 (Artin–Rees lemma). Let R be a Noetherian ring, let a / R, let M
be a finitely generated R-module, and let (Mn)n∈N be a stable a-filtration of M . If
M ′ is an R-submodule of M then (M ′ ∩Mn)n∈N is a stable a-filtration of M ′.

Proof. We have
a(M ′ ∩Mn) ⊆ aM ′ ∩ aMn ⊆M ′ ∩Mn+1,

so (M ′ ∩Mn)n∈N is an a-filtration. Hence it defines a graded Ra-module which is
a submodule of Ma and therefore finitely generated, since Ra is Noetherian. The
claim now follows from Lemma 13.5 above. �

Lemma 13.7. Let R, a and M be as above. Let (Mn)n∈N, (M
′
n)n∈N be two stable

a-filtrations of M . Then there is a positive integer n0 such that Mn+n0
⊆M ′n and

M ′n+n0
⊆Mn for every n ∈ N.

Proof. We may assume without the loss of generality that M ′n = anM . Since
aMn ⊆ Mn+1 for all n, we have anM = anM0 ⊆ Mn. By stability aMn = Mn+1

for all n ≥ n0 for some n0, and hence Mn+n0
= anMn0

⊆ anM . �

14. Poincaré series

Let R =
⊕∞

n=0Rn be a Noetherian graded ring and let M =
⊕∞

n=0Mn be a
finitely generated graded R-module.

Lemma 14.1. For every n the R0-module Mn is finitely generated.

Proof. Note that M≥n =
⊕∞

k=nMk is an R-submodule of M , so it is Noetherian,
as R is Noetherian and M is finitely generated. Therefore its quotient Mn =
M≥n/M≥n+1 is also Noetherian as an R-module, and hence as an R0-module, too.
Hence it is finitely generated as an R0-module. �

Definition 14.2. Now assume that R0 is Artinian. Then eachMn is Artinian, since
it is finitely generated over an Artinian ring. Therefore it has a composition series,
and its length l(Mn) is well-defined. The Poincaré series of M is the generating
function of the l(Mn), that is, the power series:

P (M, t) =

∞∑
n=0

l(Mn)tn ∈ Z[[t]].

Theorem 14.3 (Hilbert, Serre). The power series P (M, t) is a rational function
in t of the form f(t)/

∏s
j=1(1− tkj ), where f(t) ∈ Z[t].

Proof. The ideal R+ =
⊕∞

n=1Rn / R is finitely generated, since R is Noetherian.
Therefore there is a finite number of homogeneous elements m1,m2, . . . ,ms ∈ R+

which generate R+. Set kj = deg(mj). We are going to prove the claim by induction
on s. If s = 0 then Rn = 0 for every positive n, and hence M is actually finitely
generated as an R0-module. Therefore Mn = 0 for every sufficiently large n, so
P (M, t) is a polynomial in this case.

Now assume that s > 0 and we know the theorem for s − 1. Multiplication by
ms furnishes an exact sequence:

0 // Kn
// Mn

·ms // Mn+ks
// Ln+ks

// 0.

LetK =
⊕∞

n=0Kn and L =
⊕∞

n=0 Ln. These are both finitely generated R-modules
annihilated byms, and hence they are finitely generatedR0[m1, . . . ,ms−1]-modules,
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too. Therefore by the induction hypothesis their Poincaré series are of the form
g(t)/

∏s−1
j=1(1 − tkj ) and h(t)/

∏s−1
j=1(1 − tkj ), where g(t), h(t) ∈ Z[t]. Using the

additivity of the length we get that

l(Kn)− l(Mn) + l(Mn+ks)− l(Kn+ks) = 0,

and hence

(1− tks)P (M, t) = P (L, t)− tksP (K, t) + r(t),

where r(t) is a polynomial. The claim is now clear. �

The following claim is proved in the exercises:

Corollary 14.4. If the ideal R+ is generated by R1 then l(Mn) is a polynomial in
n for large n. �

15. Hilbert functions

Definition 15.1. Let R be a ring and let a /R be an ideal. The associated graded
ring is:

Ga(R) =

∞⊕
n=0

an/an+1, with a0 = R.

The multiplication of this graded ring is defined as follows: for each xn ∈ an let xn
denote the image of xn in an/an+1. Define xmxn to be xmxn, that is, the image
of xmxn in am+n/am+n+1. One needs to check that xmxn does not depend on the
particular representatives chosen. Now if M is an R-module and (Mn)n∈N is an
a-filtration of M then we set:

G(M) =

∞⊕
n=0

Mn/Mn+1

which is a graded Ga(R)-module in a natural way. Let Gn(M) denote Mn/Mn+1.

Lemma 15.2. Let R be a Noetherian ring and let a / R. Then:

(i) the ring Ga(R) is Noetherian,
(ii) if M is a finitely generated R-module, and (Mn)n∈N is a stable a-filtration

of M then G(M) is a finitely generated Ga(R)-module.

Proof. (i) Since R is Noetherian, the ideal a is finitely generated, so we have a =
〈m1,m2, . . . ,ms〉. Let mi be the image of mi in a/a2 for every index i. Then
Ga(R) = R/a[m1,m2, . . . ,ms]. As R/a is Noetherian, the same holds for Ga(R) by
Hilbert’s basis theorem.

(ii) By assumption there is an n0 such that Mn0+r = arMn0 for every r ∈ N,
so G(M) is generated by

⊕
n≤n0

Gn(M). Each Gn(M) is Noetherian and annihil-

iated by a, so they are finitely generated R/a-modules. Hence
⊕

n≤n0
Gn(M) is a

generated by a finite number of elements as an R/a-module, so G(M) is finitely
generated as a Ga(R)-module. �

Proposition 15.3. Let R be a local Noetherian ring, let m be its maximal ideal,
let M be a finitely generated R-module, and let (Mn)n∈N be a stable m-filtration of
M . Then:

(i) the R-module M/Mn is of finite length, for every n ∈ N,
(ii) for all sufficiently large n this length is a polynomial g(n),
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(iii) the degree and the leading coefficient of g(n) depends only on M , not on
the filtration chosen.

Proof. (i) By Lemma 15.2 the graded module G(M) is finitely generated over the
Noetherian ring Gm(R). Since Gm(R)0 is the field R/m, it is Artinian. Therefore
Mn/Mn+1 has finite length by Lemma 14.1. So the R-module M/Mn has finite
length, too.

(ii) Let m1,m2, . . . ,ms generate m. Then the images mi of the mi in m/m2

generate Gm(R) as an R/a-algebra, and each mi has degree 1. So we may use
Corollary 14.4 to conclude that l(Mn/Mn+1) = f(n) where f(n) is a polynomial
for large n. From part (i) we get that l(M/Mn)−l(M/Mn+1) = f(n), which implies
that l(M/Mn) is also a polynomial for large n.

(iii) Let (M̃n)n∈N be another stable m-filtration of M and set g̃(n) = l(M/M̃n).

By Lemma 13.7 there is a positive integer n0 such that Mn+n0 ⊆ M̃n and M̃n+n0 ⊆
Mn for every n ∈ N, and hence g(n + n0) ≥ g̃(n) and g̃(n + n0) ≥ g(n). Since g
and g̃ are polynomials for large n, we have limn→∞ g(n)/g̃(n) = 1, and therefore g
and g̃ have the same degree and leading coefficient. �

Notation 15.4. The common degree of the polynomials above is denoted by
dR(M), or by d(M), if R is clear from the context. Let χM (n) denote the polyno-
mial for the stable m-filtration (mnM)n∈N.

Proposition 15.5. Let R,m and M be as above, and let x ∈ R be an element such
that multiplication by x on M is injective. Set M ′ = M/xM . Then

d(M ′) ≤ d(M)− 1.

Proof. Let N = xM . Since N is isomorphic to M as R-modules via multiplication
by x. Set Nn = N ∩mnM . Then we have exact sequences

0 // N/Nn // M/mnM // M ′/mnM ′ // 0.

If we set g(n) = l(N/Nn), then we have

g(n)− χM (n) + χM
′
(n) = 0

for large n. By the Artin–Rees lemma (Nn)n∈N is a stable m-filtration of N . Since
N ∼= M , by part (iii) of Proposition 15.3 above g(n) and χM (n) has the same
degree and leading term. The claim is now clear. �

16. The dimension of local Noetherian rings

Theorem 16.1. Let R be a local Noetherian ring. Then dim(R) ≤ d(R).

Proof. We prove the claim by induction on d(R). If d(R) = 0 then l(R/mn) is
constant for all large n, hence mn = mn+1 for some n, so mn = 0 by Nakayama’s
lemma. Thus R is Artinian, and so dim(R) = 0. Suppose now that d(R) > 0
and let p0 ⊂ p1 ⊂ · · · ⊂ pr be any chain of ideals in R. Let x ∈ p1 − p0 and let
R′ = R/p0. Let x′ be the image of x in R′. Then x′ 6= 0 and R′ is an integral
domain so by Lemma 15.5 we have

d(R′/(x′)) ≤ d(R′)− 1.

Also if m′ is the unique maximal ideal of R′ then R′/m′n is the homomorphic image
of R/mn, and hence d(R′) ≤ d(R). So we get that

d(R′/(x′)) ≤ d(R)− 1.
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Hence by the induction hypothesis the length of any chain of prime ideals in R′/(x′)
is ≤ d(R)− 1. But the images of p1, . . . , pr in R′/(x′) form a chain of length r− 1,
so r − 1 ≤ d(R)− 1 and consequently r ≤ d(R). The claim follows. �

We get the following immediate

Corollary 16.2. If R is a local Noetherian ring then dim(R) is finite. �

Another application is the following theorem, which we will prove assuming
Hilbert’s Nullstellensatz in the exercises:

Theorem 16.3. We have dim(C[x1, x2, . . . , xn]) = n. �

17. Appendix: elements integral over a ring

Theorem 17.1. Let R be a ring and let A ⊆ R be a subring. Let x ∈ R. Then the
following are equivalent:

(a) there are a0, . . . , an−1 ∈ A such that

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0.

(b) The A-module A[x] is finitely generated.
(c) There is a subring B ⊆ R which contains A, x and it is finitely generated

as an A-module.

Here A[x] denotes ring generated by A and x. It consists of polynomials in x
with coefficients in A.

Proof. First assume (a). Let M be the A-module generated by 1, x, . . . , xn−1. By
assumption:

xn+j = −an−1x
n+j−1 − . . .− a0x

j

for every non-negative integer j. By induction on j we get that xn+j ∈M for every
such j and hence M = A[x]. Therefore as an A-module A[x] is finitely generated.

Assume now that (b) holds. Then the choice B = A[x] clearly satisfies the
conditions of (c). Finally assume that (c) is true. Let y1, . . . , yn be a finite set
of generators for the A-module B. Since x ∈ B we get that xyi ∈ B for every
i = 1, . . . , n, and hence xyi =

∑n
j=1 aijyj with some aij ∈ A. Let A be the matrix

(aij)
n
i,j=1 and let d = det(xI−A). By Cramer’s rule we have dy = 0 for every y ∈ B.

Since 1 ∈ B we get that x satisfies the monic polynomial relation det(tI −A) = 0
in the variable t. �

Definition 17.2. Let R be a ring and let A ⊆ R be a subring. We say that x ∈ R
is integral over A if it satisfies the three equivalent conditions of Theorem 17.1. Let
P ∈ A[x] be monic polynomial such that P (x) = 0. The relation P (x) = 0 is called
an equation of integral dependence of x over A.


