Algebraic number theory

Solutions sheet 4

March 11, 2011

1. (a) $m^{n}, 2,2,11$ (this ideal is $(2+\sqrt{-7})$), 4 (this ideal is (2)).
(b) $m^{-1} \mathcal{O}_{K}, \frac{1}{2}(2,1+\sqrt{-5}),\left(2, \frac{1}{2}(1-\sqrt{-7})\right), \frac{1}{11}(2-\sqrt{-7}),\left(\frac{1}{2}\right)$.
(c) All except the last one are prime ideals. The last one is

$$
(2)=\left(2, \frac{1}{2}(1+\sqrt{-7})\right)\left(2, \frac{1}{2}(1-\sqrt{-7})\right) .
$$

(d) $6+7 \sqrt{-1}$ has norm $85=5 \times 17$, so we find that this is the product of $2-\sqrt{-1}$ and $1+4 \sqrt{-1}$. These elements are irreducible in the PID $\mathbb{Z}[\sqrt{-1}]$, hence $(2-\sqrt{-1})$ and $(1+4 \sqrt{-1})$ are prime ideals. On the other hand, $5=$ $(2+\sqrt{-1})(2-\sqrt{-1})$, so that finally $\frac{1}{5}(6+7 \sqrt{-1})=(1+4 \sqrt{-1})(2+\sqrt{-1})^{-1}$ (a ratio of two principal prime ideals).
2. The complex conjugation swaps t pairs of rows of Σ, hence it sends $\operatorname{det}(\Sigma)$ to $(-1)^{t} \operatorname{det}(\Sigma)$. Thus $\operatorname{det}(\Sigma)=c(\sqrt{-1})^{t}$ for some $c \in \mathbb{R}^{*}$. Square this to find the sign of D.
3. The discriminant of $f(t)$ is -31 , and this is not divisible by a square, so we have $\mathcal{O}_{K}=\mathbb{Z} \oplus \mathbb{Z} \alpha \oplus \mathbb{Z} \alpha^{2}$ by Remark 6.17. Hence $D=-31$.
4. The only fact you need to use is that algebraic integers form a subring of \mathbb{C}.
5. (a) The first statement is obvious. Every element of $\mathrm{Cl}(K)$ has a representative which is an ideal $I \subset \mathcal{O}_{K}$. Write $I=P_{1} \ldots P_{r}$, where the P_{i} 's are prime ideals. Since $P \bar{P}=(p)$ or $\left(p^{2}\right)$, where P is a prime ideal over p, we have $\bar{I}=(a)$ for some $a \in \mathbb{Z}$. Hence the class of \bar{I} in $\mathrm{Cl}(K)$ is the inverse of the class of I, so that the classes of I and \bar{I} in $\mathrm{Cl}(K)$ are equal if and only if the order of I in $\mathrm{Cl}(K)$ is at most 2 .
(b) By part (a) if the class of I has order at most 2 in $\mathrm{Cl}(K)$, then $\bar{I}=x I$ for some $x \in K^{*}$. Write $x=\alpha / \beta$, where $\alpha, \beta \in \mathcal{O}_{K}$. Then $\alpha I=\beta \bar{I}$. Taking
norms and using the fact that $\|I\|=\|\bar{I}\|$ we obtain $N_{K}(x)= \pm 1$. The negative sign is not possible because $d<0$. By Q5 of Sheet 4 we can write $x=a / \bar{a}$, where $a \in K^{*}$. Let $J=a I$. This is a fractional ideal of K such that $J=\bar{J}$. Hence conjugate prime ideals in the decomposition of J have the same power. Thus $J=b P_{1} \ldots P_{r}$, where P_{i} are distinct prime ideals over ramified primes, and $b \in \mathbb{Q}^{*}$.
(c) Let $I=P_{1} \ldots P_{r}$, where P_{i} are distinct prime ideals over ramified primes, $r \geq 1$. If $I=(a), a \in \mathcal{O}_{K}$, then $N_{k}(a)=\|I\|=p_{1} \ldots p_{r}$, where P_{i} is the unique prime ideal of \mathcal{O}_{K} over the prime p_{i}. Note that $p_{1} \ldots p_{r}$ divides d or $2 d$ (the last case occurs if d is $3 \bmod 4$, and 2 is one of the p_{1}, \ldots, p_{r}). Let's assume that $d \neq-1$: in this case \mathcal{O}_{K} is a PID, so all ideals are principal.

If $d<-1$ is 2 or $3 \bmod 4$, it is easy to check that there are no elements of norm $p_{1} \ldots p_{r}$ in \mathcal{O}_{K} unless $p_{1} \ldots p_{r}=-d$. In the last case the only element of norm d is $\pm \sqrt{d}$. The case when d is $1 \bmod 4$ is similar. Thus the only possibility for I to be principal is $I=(\sqrt{d})$, so I must be the product of all prime ideals over the ramified primes when d is $2 \bmod 4$, and of all ideals over odd ramified primes when d is 1 or $3 \bmod 4$.
(d) The unique ideal P over a prime factor $p \mid d$ is not principle, but $P^{2}=$ $p \mathcal{O}_{K}$ is principal.

