Algebraic number theory

Solutions sheet 3

March 17, 2011

1. (a) In the first case any additive subgroup of \mathbb{Q} generated by finitely many elements will have only finitely many primes in denominators. This is also true in the second case. In the third case any finitely generated subgroup of \mathbb{Q}/\mathbb{Z} is finite, and so is never equal to the whole group.

(b) For a factor group of G this is obvious: it is generated by the images of generators of G. Let M be a f.g. abelian group, and let $N \subset M$ be a subgroup. There exists a surjective homomorphism $f : \mathbb{Z}^n \to M$ for some n. By a theorem from lectures $f^{-1}(N)$ is isomorphic to \mathbb{Z}^r for some r. Then Nis generated by the images of the standard basis vectors of \mathbb{Z}^r .

2. The discriminant of the polynomial is -11, so $K = \mathbb{Q}(\sqrt{-11})$. Since -11 is 1 modulo 4, p = 2 is not ramified, so the only prime ramified in K is 11. The prime 2 is inert since -11 is 5 modulo 8. Gauss reciprocity implies that an odd $p \neq 11$ is split if and only if p is a square modulo 11, that is, 1, 3, 4, 5 or 9 modulo 11.

p = 47 is 3 modulo 11, so it is split in K. The minimal polynomial of $\delta = \frac{1}{2}(1 + \sqrt{-11})$ is $t^2 - t + 3$. Let's solve it modulo 47 using the standard formula. -11 is 6^2 modulo 47; note also that $\frac{1}{2}$ is 24. Hence the solutions are 27 and 21. (It's good to check here that 21 + 27 is 1 mod 47, and 21×27 is 3 mod 47.) Therefore the ideals are $(47, \delta - 27)$ and $(47, \delta - 21)$.

There is a quicker way to find these ideals. Let d be a square-free integer congruent to 1 modulo 4, $\delta = \frac{1}{2}(1 + \sqrt{d})$, and let $p \neq 2$ be an odd prime that splits in $\mathbb{Q}(\sqrt{d})$. Let A be an integer such that $t^2 - t + \frac{1}{4}(1 - d) = (t - A)(t - 1 + A)$ modulo p. I claim that we have the equality of ideals

$$(p, \delta - A) = (p, \sqrt{d} - a),$$

where a is an integer such that $a^2 \equiv d \mod p$. In fact, we can take a = 2A - 1.

Since $\sqrt{d} = 2\delta - 1$ the displayed equality becomes

$$(p, \delta - A) = (p, 2(\delta - A)).$$

But $\delta - A \equiv (p+1)/2 \times 2(\delta - A) \mod p$, so we are done.

Going back to the question we obtain $(47, \delta - 27) = (47, \sqrt{-11} - 6)$, and similarly $(47, \delta - 21) = (47, \sqrt{-11} + 6)$. Please bear in mind that this will only work for *odd* primes, and for 2 you will need the general formulae with δ given in lectures.

3. (a) If d is 2 or 3 mod 4, then 2 is ramified. If d is 1 mod 4, then $d \neq \pm 1$, so there is a odd prime p dividing d, which is ramified in $\mathbb{Q}(\sqrt{d})$.

(b) Let d be the product of all odd primes in S, and let $d^* = \pm d$, where the sign is chosen so that $d^* \equiv 1 \mod 4$. If $S = \{2\}$ define $d^* = 1$. If S does not contain 2, then $\mathbb{Q}(\sqrt{d^*})$ does the job, and this is the only quadratic field ramified exactly at the primes of S. If S contains 2, then we have $\mathbb{Q}(\sqrt{-d^*})$, $\mathbb{Q}(\sqrt{2d^*})$, $\mathbb{Q}(\sqrt{-2d^*})$.

4. The linear span of $\sqrt[3]{d}$ and $\sqrt[3]{d}^2$; the linear span of \sqrt{a} , \sqrt{b} and \sqrt{ab} . The calculation is straightforward.

5. Write $a = x + y\sqrt{d}$, then $x - y\sqrt{d} = (z_1 + z_2\sqrt{d})(x + y\sqrt{d})$ gives a system of two linear equations in x and y with zero determinant.

6. $-5 \equiv 3 \mod 4$, so $\mathcal{O}_K = \mathbb{Z}[\sqrt{-5}]$. If $I = (a + b\sqrt{-5})$, $a, b \in \mathbb{Z}$, then $a^2 + 5b^2$ divides 4 and 6, so an easy calculation shows that $a + b\sqrt{-5}$ is a unit, hence $I = \mathcal{O}_K$. But I is a prime ideal over 2, so $I = \mathcal{O}_K$ is impossible. Therefore, I is not principal. We have $I^2 = 2\mathcal{O}_K$ which is clearly principal.

7. Consider d = -1, -2 and -3, and do an easy calculation using Gauss reciprocity. In the last case $-3 \equiv 1 \mod 4$, and the norm looks like this:

$$N(a+b\delta) = a^{2} + ab + b^{2}(1-d)/4 = a^{2} + ab + b^{2}.$$