Algebraic number theory

Solutions to test 2
March 12, 2012

You can use any results from lectures without proof.

1. 6 marks

Let d be a square free integer. It is known from lectures (and is easily computed) that the discriminant of $\mathbb{Q}(\sqrt{d})$ is $D=4 d$ if d is 2 or 3 modulo 4 , and $D=d$ if d is 1 modulo 4 . The first case gives $d=2,3,-1,-2$ with discriminants $D=8,12,-4,-8$, respectively. The second case gives $d=D=5,-3,-7,-11$.

2. 8 marks

(a) From lectures we know that 2 is ramified and $P=(2,1+\sqrt{-13})$. (1 mark)
(b) We need to show that P is not principal. (Then its class in $\mathrm{Cl}(K)$ is non-trivial. Since $P^{2}=2 \mathcal{O}_{K}$ is principal, the order of the class of P in $\mathrm{Cl}(K)$ is 2.) Now P has norm 2 , so if P has one generator, then the norm of this generator is 2 . Since $x^{2}+13 y^{2}=2$ has no integral solutions, we conclude that P is not principal. (6 marks for a complete proof)
(c) Any Euclidean domain is a PID, so \mathcal{O}_{K} is not one. (1 mark)

3. 6 marks

The norm $(1+\sqrt{-13})$ is 14 , so $(1+\sqrt{-13})=P Q$, where P is the unique prime ideal over 2 (described in Q2(a)), and Q is a prime ideal over 7. Now -13 is $1=(\pm 1)^{2}$ modulo 7 , so 7 is split and Q is either $(7,1+\sqrt{-13})$ or its conjugate. Since $1+\sqrt{-13} \in(7,1+\sqrt{-13})$ we conclude that $Q=$ $(7,1+\sqrt{-13})$.

