Algebraic number theory

Solutions to test 1

February 20, 2012

1. $\mathbf{7}$ marks for any complete proof.

We have $\mathbb{Z} \subset R \subset \mathbb{Q}$, and \mathbb{Q} is the field of fractions of \mathbb{Z}. Hence \mathbb{Q} is also the field of fractions of R. We must prove that a fraction $a / p^{m} b$ in lowest terms, where $m \geq 1$, cannot be integral over R. Otherwise, $f\left(a / p^{m} b\right)=0$ for some monic polynomial $f(t)=t^{n}+c_{n-1} t^{n-1}+\ldots$ in $R[t]$. Multiplying by $p^{n m-1} b^{n} / a^{n}$ we see that $p^{-1} \in R$, a contradiction.

2. 4 marks

From lectures we know that these ideals are $(2, \delta)$ and $(2, \delta+1)$, where $\delta=(1+\sqrt{-15}) / 2$.
3. 9 marks, 3 marks for each complete case.

If d is 1 modulo 4 , then 2 is not ramified, so the primes that are ramified must be two odd primes p and q. Then $d= \pm p q$, where the sign is 1 if $p q$ is 1 modulo 4 , and -1 is $p q$ is 3 modulo 4 .

If d is 2 modulo 4 , then 2 is ramified, so only one odd prime p is ramified. Hence $d= \pm 2 p$ for any choice of sign.

If d is 3 modulo 4 , then 2 is ramified, so only one odd prime p is ramified. In this case $d= \pm p$, where the sign is 1 if p is 3 modulo 4 , and -1 is p is 1 modulo 4.

