Algebraic number theory

Solutions sheet 1

January 25, 2011

1. (i) Since $\alpha^{3}=5$, the ring $\mathbb{Z}[\alpha]$ is the set of integral linear combinations of $1, \alpha, \alpha^{2}$. This gives an isomorphism of \mathbb{Z}-modules $\mathbb{Z}^{3} \xrightarrow{\sim} \mathbb{Z}[\alpha]$, so $\mathbb{Z}[\alpha]$ is a free \mathbb{Z}-module. In the basis $1, \alpha, \alpha^{2}$ the element $\alpha+\alpha^{2}$ acts as the matrix

$$
\left(\begin{array}{lll}
0 & 5 & 5 \\
1 & 0 & 5 \\
1 & 1 & 0
\end{array}\right)
$$

Computing its characteristic polynomial we get $f(x)=x^{3}+25 x-30$.
(ii) The same method gives $f(x)=x^{4}-10 x^{2}-20 x+20$.
2. $\frac{1}{2}(1+\sqrt{d})$ is the root of $x^{2}-x-\frac{1}{4}(1-d)=0$, a monic polynomial with integral coefficients.
3. Let $a \in A, a \neq 0$. Then $a^{-1} \in R$, since R is a field. Since a^{-1} is integral over A, we have

$$
a^{-n}+a_{n-1} a^{-(n-1)}+\ldots+a_{1} a^{-1}+a_{0}=0, \text { for some } a_{i} \in A,
$$

hence

$$
a^{-1}=-\left(a_{n-1}+\ldots+a_{1} a^{n-2}+a_{0} a^{n-1}\right) \in A .
$$

4. The field of fractions of $F[x]$ is the set $F(x)$ of rational functions $\frac{f(x)}{g(x)}$, where $f(x)$ and $g(x)$ are in $F[x]$, and $g(x)$ is not the zero polynomial. Write our element as the fraction in lowest terms. If $g(x)$ is not a constant polynomial, we deduce a contradiction by using the same proof as in class.
5. (i) The $F\left[x^{2}\right]$-module $F[x]$ is generated by 1 and x. Now Thm. 3.2 implies that every element of $F[x]$ is integral over $F\left[x^{2}\right]$.
(ii) Write $f(x)=g\left(x^{2}\right)+x h\left(x^{2}\right)$ for some polynomials $g(x)$ and $h(x)$. Then $f(x)$ is a root of $t^{2}-2 g\left(x^{2}\right) t+g\left(x^{2}\right)^{2}-x^{2} h\left(x^{2}\right)^{2}=0$, a monic polynomial with coefficients in $F\left[x^{2}\right]$.
6. To prove that A is a ring it is enough to check that A is closed under + , - and \times, and $1 \in A$, which is straightforward. The field of fractions of A is $F(x)$, because $x=\frac{x^{3}}{x^{2}}$, and x^{2}, x^{3} are both in A. Now x is a root of the monic polynomial $t^{2}-x^{2}$ with coefficients in A (since $x^{2} \in A$), so x is an element of $F(x)$ which is integral over A, but $x \notin A$. Hence A is not integrally closed. In fact, $F[x]$ is generated by 1 and x as an A-module, so any element of $F[x]$ is integral over A, by Thm. 3.2. From Q4 we see that $F[x]$ is integrally closed, so it must be the integral closure of A.
7. Let $x \in \tilde{F}, x \neq 0$. There exist $a_{0}, \ldots, a_{n-1} \in F$ such that

$$
x^{n}+a_{n-1} x^{n-1}+\ldots+a_{1} x+a_{0}=0 .
$$

If $a_{0}=0$ we can divide by x, so we can assume that $a_{0} \neq 0$. Then

$$
x^{-1}=-a_{0}^{-1}\left(x^{n-1}+a_{n-1} x^{n-2}+\ldots+a_{1}\right) \in \tilde{F} .
$$

