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Introduction

For this course you need a very good understanding of linear algebra; a good knowl-
edge of group theory and the representation theory of finite groups will also help.
The main sources for these notes are the books [6] and [8].

We give complete proofs of all statements with the exception of the conjugacy
of Cartan subgroups, the uniqueness theorem for semisimple Lie algebras, and the
existence theorem for exceptional semisimple Lie algebras. These results can be
found in [4].
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1 Basic definitions and examples

Let k be a field of characteristic zero. Most of the time k will be R or C.

A not necessarily associative algebra is a vector space over k with a bilinear
product, i.e. a product satisfying left and right distributivity laws. Two classes of
such algebras have particularly good properties and so are very useful: associative
algebras, where multiplication satisfies the associativity axiom

(ab)c = a(bc),

and Lie algebras, where the product is traditionally written as the bracket [ab], and
satisfies skew-symmetry and the Jacobi identity :

[aa] = 0, [a[bc]] + [b[ca]] + [c[ab]] = 0.

We have 0 = [a+ b, a+ b] = [aa] + [bb] + [ab] + [ba] = [ab] + [ba], so that the bracket
is indeed skew-symmetric in the usual sense.

Examples of Lie algebras 1. Abelian Lie algebras. Any vector space with the
zero product [ab] = 0.

2. R3 with vector product a × b. It can be defined by bilinearity and skew-
symmetry once we postulate

e1 × e2 = e3, e2 × e3 = e1, e3 × e1 = e2.

The Jacobi identity is a standard exercise in vector algebra.

3. From any associative algebra A we construct a Lie algebra on the same vector
space by setting [ab] = ab− ba. The Lie algebra of n× n-matrices is called gl(n).

4. Let sl(n) be the subspace of gl(n) consisting of matrices with zero trace. Since
Tr(AB) = Tr(BA), the set sl(n) is closed under [ab] = ab − ba, and hence is a Lie
algebra.

5. Let o(n) be the subspace of gl(n) consisting of skew-symmetric matrices, that
is, AT = −A. Then

(AB −BA)T = BTAT − ATBT = (−B)(−A)− (−A)(−B) = −(AB −BA), (1)

so that o(n) is closed under [ab] = ab− ba, and hence is a Lie algebra.

If we want to emphasize the dependence of the ground field k we write gl(n, k),
sl(n, k), o(n, k).

To define a Lie bracket on a vector space with basis e1, . . . , en we need to specify
the structure constants crlm, that is, elements of k such that

[el, em] =
n∑
r=1

crlmer.
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For example,

H =

(
1 0
0 −1

)
, X+ =

(
0 1
0 0

)
, X− =

(
0 0
1 0

)
is a basis of the vector space sl(2). One easily checks that

[H,X+] = 2X+, [H,X−] = −2X−, [X+, X−] = H.

Similarly,

Rx =

 0 0 0
0 0 −1
0 1 0

 , Ry =

 0 0 1
0 0 0
−1 0 0

 , Rz =

 0 −1 0
1 0 0
0 0 0


is a basis of the vector space o(3). We have

[Rx, Ry] = Rz, [Ry, Rz] = Rx, [Rz, Rx] = Ry.

Definition 1.1 A homomorphism of Lie algebras is a linear transformation which
preserves the bracket. An isomorphism is a bijective homomorphism. A Lie subal-
gebra is a vector subspace closed under the bracket. An ideal of a Lie algebra g is
a Lie subalgebra a ⊂ g such that [ag] ⊂ a. By skew-symmetry of the bracket any
ideal is two-sided. The quotient algebra g/a is then defined in the obvious way, as a
quotient vector space with the inherited bracket operation.

More examples of Lie algebras 6. Upper triangular n × n-matrices A = (aij),
aij = 0 if i > j, form a subalgebra of the full associative algebra of n× n-matrices.
The attached Lie algebra will be denoted by t(n).

7. Upper triangular n× n-matrices A = (aij) such that aii = 0 for all i also form
a subalgebra of the algebra of n × n-matrices. The attached Lie algebra will be
denoted by n(n).

Exercises. 1. Prove that o(2) and n(2) are abelian 1-dimensional Lie algebras,
hence they are isomorphic to k with zero bracket.

2. Prove that the Lie algebra from Example 2 is isomorphic to o(3) by comparing
the structure constants.

3. Let k = R or C. The Lie algebras sl(2), o(3), t(2), n(3) all have dimension 3.
Are any of these isomorphic? (The answer will depend on k.)

Definition 1.2 The derived algebra g′ of a Lie algebra g is the ideal [gg] gener-
ated by [ab], for all a, b ∈ g.
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It is clear that g/[gg] is the maximal abelian quotient Lie algebra of g. This
construction can be iterated as follows to define the derived series of g:

g(1) = [gg], g(r+1) = [g(r)g(r)].

By induction we show that the g(r) are ideals of g (the first inclusion is due to the
Jacobi identity):

[g(r+1)g] = [[g(r)g(r)]g] ⊂ [[g(r)g]g(r)] ⊂ [g(r)g(r)] = g(r+1).

If g(n) = 0 for some n, then g is called solvable. We note that any automorphism of
g preserves g(r). The last non-zero ideal g(r) is visibly abelian.

An example of a solvable Lie algebra is t(n), or any abelian Lie algebra.

We can also iterate the construction of the derived algebra in another way: g1 =
g(1) = [gg], gr+1 = [grg]. This means that gr is generated by iterated brackets of r+1
elements [a1[a2[a3 . . . [arar+1] . . .]]]. This series of ideals is called the lower central
series, and if it goes down to zero, then g is called nilpotent. The ideals gr are also
preserved by the automorphisms of g. An example of a nilpotent Lie algebra is n(n).
Any abelian Lie algebra is also nilpotent.

More exercises. 4. Compute the derived series of t(n), n(n), sl(n). Hence deter-
mine which of these Lie algebras are solvable.

5. Compute the lower central series of t(n), n(n), sl(n). Hence determine which
of these Lie algebras are nilpotent.

6. Prove that g(r) ⊂ gr for any g and r. In particular, this implies that every
nilpotent algebra is solvable. Show by an example that the converse is false. (Hint:
consider the Lie algebra attached to the algebra of affine transformations of the line
x 7→ ax + b, a, b ∈ k. This algebra can be realized as the algebra of 2× 2-matrices
with the zero bottom row.)

2 Theorems of Engel and Lie

A (matrix) representation of a Lie algebra g is a homomorphism g → gl(n); the
number n is called the dimension of the representation. A representation is called
faithful if its kernel is 0. A representation g → gl(V ), where V is a vector space,
is called irreducible if the only g-invariant subspace W ⊂ V , W 6= V , is W = 0.
(Recall that a subspace W ⊂ V is g-invariant if gW ⊂ W .)

Any subalgebra of gl(n) comes equipped with a natural representation of dimen-
sion n. To an arbitrary Lie algebra g we can attach a representation in the following
way.

Definition 2.1 Elements a ∈ g act as linear transformations of the vector space g

by the rule x 7→ [ax]. The linear transformation of g attached to a ∈ g is denoted
by ad(a).
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Lemma 2.2 ad is a homomorphism g→ gl(g), called the adjoint representation.

Proof To check that ad is a homomorphism we need to prove that

ad([ab]) = [ad(a)ad(b)] = ad(a)ad(b)− ad(b)ad(a).

The left hand side sends x to [[ab]x], whereas the right hand side sends x to [a[bx]]−
[b[ax]]. By the Jacobi identity this is the same as [a[bx]] + [a[xb]] + [x[ba]], and by
skew-symmetry this equals [x[ba]] = −[[ba]x] = [[ab]x]. QED

Recall that a linear transformation is nilpotent if its n-th power is zero for some n.
It easily follows from the definition of a nilpotent Lie algebra that if g is nilpotent,
then ad(x) is nilpotent for any x ∈ g. The converse is also true. Engel’s theorem
says that if g has a faithful representation ρ : g→ gl(n) such that ρ(x) is nilpotent
for every x ∈ g, then g is a nilpotent Lie algebra. A key result in the direction of
Engel’s theorem is the following proposition.

Proposition 2.3 If ρ : g→ gl(V ) is a representation on a (non-zero) vector space
V such that ρ(a) is a nilpotent linear transformation for any a ∈ g, then V has a
non-zero vector v0 such that gv0 = 0 (i.e. a common eigenvalue with eigenvalue 0).

Note that this holds for the Lie algebra n(n).

Proof We prove this for all finite-dimensional Lie algebras inductively by dim g. If
dim g = 1 and ρ is non-zero, then g ⊂ gl(V ) is spanned by one nilpotent matrix.
The characteristic polynomial of a nilpotent n×n matrix is tn, so 0 is an eigenvalue.
Thus the statement is clear in this case.

If ρ is not faithful, then dim (g/Ker ρ) < dim g, so that the statement for g follows
from that for dim (g/Ker ρ), which holds by the inductive assumption.

Hence we assume g ⊂ gl(V ), so that the elements of g are nilpotent linear trans-
formations of V given by nilpotent matrices. Then ad(a), a ∈ g, is a linear trans-
formation of g given by x 7→ ax− xa. We have

ad(a)x = ax−xa, ad(a)2x = a2x−2axa+xa2, ad(a)3x = a3x−3a2xa+3axa2−xa3, . . .

(2)
so that ad(a)r consists of the terms like amxar−m. Thus an = 0 implies ad(a)2n−1 =
0. This shows that the image of any element of g under the adjoint representation
is nilpotent.

Let m ⊂ g, m 6= g, be a maximal subalgebra (possibly, m = 0). The restriction
of ad to m leaves m invariant, hence we obtain the quotient representation of m on
g/m. We have proved that ad(a) is nilpotent for each a ∈ g, so in particular for
each a ∈ m. Since dim (m) < dim (g) we can use the inductive assumption for the
representation of m in g/m and conclude that there is a non-zero vector in g/m on
which m acts by 0. Suppose this vector is v + m, where v ∈ g. Then [m, v] ∈ m.

5



This shows that the vector space spanned by m and v is a subalgebra of g. Since
v /∈ m and m is maximal, this subalgebra is g.

Let U be the subspace of V consisting of all the vectors killed by m; note that
U 6= 0 by the inductive assumption. Let us show that U is g-invariant. Since
mU = 0 we need to show that vU ⊂ U , that is, mvu = 0 for any m ∈ m, u ∈ U .
Write mv = vm + [mv], thus mvu = vmu + [mv]u = 0 since [mv] ∈ m, and every
element of m kills u. Now consider the nilpotent linear transformation of U defined
by v. Clearly, U has a non-zero vector killed by v, but this vector is killed by the
whole of g, so we are done. QED

Theorem 2.4 (Engel) If every element of g ⊂ gl(n) is a nilpotent linear transfor-
mation, then there exists a sequence of subspaces

0 = V0 ⊂ V1 ⊂ V2 ⊂ . . . ⊂ Vn−1 ⊂ Vn = V, (3)

such that every a ∈ g sends Vi to Vi−1. (Equivalently, V has a basis with respect
to which every element of g is given by a strictly upper triangular matrix.) In
particular, g is nilpotent.

Proof We prove this by induction in dim (V ). If dim (V ) = 1 there is nothing to prove
because the only nilpotent linear transformation of V is 0. Suppose the statement
is proved for vector spaces of dimension at most dim (V ) − 1. By Proposition 2.3
there is a non-zero vector e1 ∈ V such that ge1 = 0. Let V1 be the linear span of
e1. Since V1 is an invariant subspace of V , there is a natural representation of g in
V/V1. It is clear that every element in the image of this representation is nilpotent.
By the inductive assumption V/V1 has a basis with respect to which every element
of g is a strictly upper triangular matrix. Suppose that this basis consists of the
cosets of e2, . . . , en ∈ V . Then e1, e2, . . . , en is a basis of V with respect to which
every element of g is a strictly upper triangular matrix. �

Corollary 2.5 If ad(a) is a nilpotent linear transformation of g for every a ∈ g,
then g is nilpotent.

Proof Apply Engel’s theorem to the quotient Lie algebra g/Ker (ad). Then for some
n we have ad(a1) . . . ad(an) = 0 for any ai ∈ g. This means that [a1[a2 . . . [an, a]]] = 0
for any a1, a2, . . . , an, a ∈ g, so that gn+1 = 0. QED

Exercises. 1. Prove that every subalgebra of a solvable (resp. nilpotent) Lie
algebra is solvable (resp. nilpotent). The same statement for quotient algebras.

2. Exercise 1 shows that every subalgebra of n(n) is nilpotent. Clearly, every
element of n(n) is nilpotent. Find a nilpotent subalgebra g ⊂ gl(n) such that no
non-zero element of g is nilpotent. (Hint: think of diagonal matrices.)
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Lie’s theorem proves that for every solvable subalgebra g ⊂ gl(V ) there exists a
basis of V such that g ⊂ t(n). This works only for k = C.

To make the following technical statement a bit clearer let us make a remark.
Suppose V is a representation of a Lie algebra a, and v ∈ V is a common eigenvector
of all the elements of a. For a ∈ a we denote by f(a) ∈ k the eigenvalue of a, that is,
av = f(a)v. Then f : a → k is a linear function. Indeed, for x1, x2 ∈ k, a1, a2 ∈ a

we obviously have

(x1a1 + x2a2)v = x1(a1v) + x2(a2v) = x1f(a1)v + x2f(a2)v = (x1f(a1) + x2f(a2))v,

so that f is linear. We write a∗ = Hom(a, k) for the set of linear functions on a.
(This is called the dual vector space of the vector space a.)

Lemma 2.6 (Dynkin) Let g ⊂ gl(V ) be a complex Lie subalgebra (i.e. k = C),
a ⊂ g an ideal, and λ(x) ∈ a∗ a linear function. Define

W = {v ∈ V |av = λ(a)v for any a ∈ a}.

Then gW ⊂ W .

Dynkin’s lemma says that given a representation V of g, and a linear function λ on
an ideal a ⊂ g, the λ-eigenspace of a in V is g-invariant.

Proof Let x ∈ g, a ∈ a. Observe that ax = xa + [ax]. Since a is an ideal we have
[ax] ∈ a. If v ∈ W , then we obtain

axv = xav + [ax]v = λ(a)xv + λ([ax])v. (4)

We want to show that xv ∈ W , that is, axv = λ(a)xv, and for this it is enough to
show that [ax] ∈ Ker (λ(x)).

We define an increasing family of subspaces U0 ⊂ U1 ⊂ U2 . . . so that U0 is
spanned by v, and Ur is spanned by v, xv, . . . , xrv. Let n be such that v, xv, . . . , xnv
are linearly independent, but xn+1v ∈ Un. Visibly, xUn ⊂ Un. By induction we
deduce from (4) that aUi ⊂ Ui. Indeed, aU0 ⊂ U0 by the choice of v, formula (4)
shows that axv ∈ λ(a)xv + U1,

ax2v = xaxv + [ax]xv = x2av + x[ax]v + [ax]xv ∈ λ(a)x2 + U1.

By induction one proves that axmv ∈ λ(a)xm +Um−1. This implies that in the basis
v, xv, . . . , xnv of Un every a ∈ a is given by an upper triangular matrix with all the
diagonal entries equal to λ(a).

Hence for any a ∈ a the trace of a on Un is (n + 1)λ(a). In particular, this is
true for [ax] ∈ a, but Tr[ax] = Tr(ax)− Tr(xa) = 0, thus λ([ax]) = 0. (It is crucial
here that the characteristic of k is zero: if k has characteristic p and p|n + 1, the
argument will collapse.) QED
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Theorem 2.7 (Lie) Let k = C, and let g ⊂ gl(V ) be a solvable Lie subalgebra.
There exists a non-zero vector which is an eigenvector of every element of g. In
other words, there exist a vector w ∈ V , w 6= 0, and a linear function λ(x) ∈ g∗ =
Hom(g,C) such that xw = λ(x)w for any x ∈ g.

Proof We prove this by induction on dim g. If dim g = 1 the statement follows from
linear algebra since we assumed that k = C. Now suppose the statement is proved in
all dimensions less than dim g. Since g′ = [gg] is a proper subspace of g we can choose
a vector subspace a ⊂ g of codimension 1 such that g′ ⊂ a. Then [ag] ⊂ g′ ⊂ a, so
that a is an ideal of g. Clearly, a is a solvable Lie algebra. By induction hypothesis,
for some linear function λ ∈ a∗ the λ(x)-eigenspace W ⊂ V defined as in Dynkin’s
lemma, is non-zero. Choose x ∈ g \ a. By Dynkin’s lemma xW ⊂ W . By linear
algebra x has an eigenvector w ∈ W , w 6= 0, with eigenvalue λ0 ∈ C. Any element
of g can be written as a+ sx, a ∈ a, s ∈ k, and (a+ sx)w = (λ(a) + sλ0)w. QED

Corollary 2.8 For any representation of a solvable Lie algebra g in a complex vec-
tor space V there exist a basis of V such that all the matrices of the elements of g
are upper triangular.

Proof This follows from Lie’s theorem by induction on dimV (consider the quotient
space V/Cw). QED

Corollary 2.9 A Lie algebra g is solvable if and only if its derived algebra g′ = [gg]
is nilpotent.

Proof If g′ is nilpotent, then g′ is solvable, but then g is solvable too.

Conversely, by Corollary 2.8, g has a basis in which ad(x) is upper triangular for
any x ∈ g. Thus for any y ∈ g′ the matrix ad(y) is strictly upper triangular, hence
is a nilpotent linear transformation of g. But ad(y) preserves g′ ⊂ g, so we see that
every element in the image of the adjoint representation of g′ is nilpotent. Hence g′

is a nilpotent Lie algebra, by Corollary 2.5. QED

More exercises. 3. Prove that any complex (resp. real) irreducible representation
of a solvable Lie algebra has dimension 1 (resp. 2).

3 The Killing form and Cartan’s criteria

Recall that the adjoint representation associates to an element a ∈ g the linear
transformation ad(a) : g → g. Let us define a bilinear form K : g × g → k

by the formula K(a, b) = Tr(ad(a)ad(b)) (the trace of the composition of linear
transformations ad(a) and ad(b), sending x ∈ g to [a[bx]]). It is called the Killing
form of g. Since Tr(AB) = Tr(BA) the Killing form is symmetric. We shall see that
the properties of the Killing form of a Lie algebra g say a lot about g. The following
lemma exhibits various functoriality properties of the Killing form.
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Lemma 3.1 (i) If φ : g→ g is an automorphism of g, then K(φa, φb) = K(a, b).

(ii) The Killing form is invariant in the following sense:

K([ab], c) +K(b, [ac]) = 0.

(iii) If a ⊂ g is an ideal, then the restriction of the Killing form of g to a is the
Killing form of a.

Proof (i) Recall that an automorphism is a linear transformation g → g which
preserves the Lie bracket. We have ad(a)(x) = [ax] hence

ad(φa)(x) = [φa, x] = φ[a, φ−1x] = (φ ◦ ad(a) ◦ φ−1)(x).

Therefore, ad(φa)◦ad(φb) = φ◦ad(a)◦φ−1 ◦φ◦ad(b)◦φ−1 = φ◦ad(a)◦ad(b)◦φ−1.
The traces of equivalent matrices are equal, thus

Tr(ad(φa) ◦ ad(φb)) = Tr(φ ◦ ad(a) ◦ ad(b) ◦ φ−1) = Tr(ad(a) ◦ ad(b)).

(ii) We need to prove that the trace of the linear transformation ad([ab])ad(c) +
ad(b)ad([ac]) is zero. Since ad is a representation, this transformation can also be
written as

(ad(a)ad(b)− ad(b)ad(a))ad(c) + ad(b)(ad(a)ad(c)− ad(c)ad(a)) =
ad(a)(ad(b)ad(c))− (ad(b)ad(c))ad(a).

Since Tr(AB −BA) = 0, this linear transformation has trace 0.

(iii) We note that a is an ad(a)-invariant subspace of g. Since [ag] ⊂ a the quotient
adjoint representation of a on g/a is trivial. Therefore, for a, b ∈ a we have

Kg(a, b) = Trg(ad(a)ad(b)) = Tra(ad(a)ad(b))+Trg/a(ad(a)ad(b)) = Ka(a, b). QED

For the following proposition we need the full strength of the Jordan normal form.

Theorem 3.2 (Jordan decomposition) Any linear transformation of a complex
vector space V is uniquely written as a = s + n, where s is diagonalisable and n is
nilpotent, and sn = ns. In this case s and n can be written as polynomials in a with
complex coefficients.

Proof The standard Jordan normal form theorem from linear algebra says that V
has a basis in which the matrix of a is a direct sum of Jordan blocks. Let us group
together Jordan blocks with identical eigenvalues. This gives a decomposition of V
into a direct sum of subspaces

V = V1 ⊕ . . .⊕ Vm
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so that aVi ⊂ Vi for each i, the matrix of a : Vi → Vi is a direct sum of Jordan blocks
with the same eigenvalue si ∈ C, and si 6= sj when i 6= j. Write di = dim (Vi).

We see that a−siId : Vi → Vi is a nilpotent linear transformation. More precisely,
(a− siId)di is 0 on Vi, i.e. Vi ⊂ Ker [(a− siId)di ].

Let s be the linear transformation of V that preserves each Vi and acts on Vi as
siId. In particular, s is diagonalisable. Let n = a − s. It is clear that nVi ⊂ Vi for
each i. Moreover, nd = 0, where d is the largest of the di, where i = 1, . . . ,m, so n
is nilpotent. The restrictions of n and s to Vi obviously commute, hence sn = ns.

Let us show that s and n can be given by polynomials in a. It is enough to show
that s = f(a) for some f(x) ∈ C[x], because then n = g(a), where g(x) = x− f(x).
The polynomials (x−si)di are pairwise coprime. By the Chinese remainder theorem
for the polynomial ring C[x] we can find a polynomial f(x) which is congruent to si
modulo (x− si)di , for each i = 1, . . . ,m. This means that f(x)− si = gi(x)(x− si)di
for some gi(x) ∈ C[x]. It is clear that f(a) preserves each Vi because so does a.
Since Vi ⊂ Ker [(a− siId)di ], the linear transformation f(a) acts on Vi as siId. Thus
s = f(a).

It remains to prove that the decomposion a = s + n is unique. If a = s + n =
s′ + n′ are two decompositions as above, then s and s′ commute, because each
is a polynomial in a. An easy linear algebra argument shows that s and s′ can
be simultaneously diagonalised. (Indeed, consider a basis in which s is diagonal
and write V as the direct sum of eigenspaces of s. Since ss′ = s′s, each of these
eigenspaces is preserved by s′. The minimal polynomial of a diagonalisable linear
transformation has no multiple roots. The restriction of s′ to each eigenspace of s
is annihilated by the minimal polynomial of s′, so this restriction is diagonalisable.)
For the same reason n and n′ commute. This immediately implies that n − n′ is
nilpotent. We have s−s′ = n′−n, but the only diagonal nilpotent matrix is 0. This
shows that s = s′ and n = n′. QED

Corollary 3.3 Let a = s + n be the Jordan decomposition of a ∈ gl(V ). Then
ad(a) = ad(s) + ad(n) is the Jordan decomposition of the linear transformation
ad(a) : gl(V )→ gl(V ).

Proof It is enough to check that ad(s) is diagonalisable, ad(n) is nilpotent and
ad(s)ad(n) = ad(n)ad(s). In the proof of Proposition 2.3 we have seen that the
linear transformation ad(n)(x) = [n, x] is nilpotent, because the powers of n pile
up on one or the other side of x, see formula (2). Since ad is a representation,
sn − ns = [sn] = 0 implies ad(s)ad(n) − ad(n)ad(s) = 0. Finally, suppose we
have a basis e1, . . . , em of V in which s is diagonal. Then the matrix of the linear
transformation ad(s) : gl(V ) → gl(V ) in the standard basis of gl(V ) (consisting of
the matrices with exactly one entry equal to 1 and all other entries equal to 0) is
the diagonal m2 × m2 matrix diag (si − sj). Now the statement follows from the
uniqueness of the Jordan decomposition of ad(a). QED
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Next we explore what happens if the Killing form is (almost) identically zero.

Proposition 3.4 Let k = C. If g ⊂ gl(V ) is a Lie subalgebra such that Tr(xy) = 0
for any x, y ∈ g, then g′ is nilpotent.

Proof Let x ∈ g. Let x = s + n be the Jordan decomposition of x. In some basis
s is the diagonal matrix s = diag (s1, . . . , sm), where m = dim (V ). Let us consider
the complex conjugate matrix s = diag (s1, . . . , sm). The same proof as in Theorem
3.2 gives that s is a polynomial in x with complex coefficients. It follows that s
commutes with n, and so s n is nilpotent. The trace of a nilpotent transformation
is zero, thus

Tr(s x) = Tr(s s) =
m∑
i=1

sisi. (5)

The Lie algebra g acts on the algebra of matrices gl(V ) via the restriction of the
adjoint representation of gl(V ) to g. By Corollary 3.3, ad(x) = ad(s) + ad(n) is
the Jordan decomposition of ad(x). In particular, ad(s) = ad(s) is a polynomial in
ad(x). The subspace g ⊂ gl(V ) is ad(x)-invariant, and so is also ad(s)-invariant.
That is, [sa] ∈ g for any a ∈ g.

If x ∈ g′, then x is the sum of brackets like [ab] = ab− ba, for a, b ∈ g. We have

Tr(s [ab]) = Tr(sab− sba) = Tr(sab− asb) = Tr([sa]b).

Since [sa] ∈ g, our assumption implies that Tr(s [ab]) = 0, hence Tr(sx) = 0. By (5)
we see that

∑r
i=1 sisi = 0, hence s = 0 and x = n is nilpotent. By Engel’s theorem

g′ is nilpotent. QED

Theorem 3.5 (Cartan’s first criterion) A Lie algebra g is solvable if and only
if K(g, g′) = 0.

Proof Consider ad(g) = g/Z(g), where Z(g) = {a ∈ g|[ab] = 0 for any b ∈ g} is the
centre of g. Obviously K(g, g′) = 0 implies K(g′, g′) = 0, that is, Tr(xy) = 0 for
any x, y ∈ ad(g)′ = ad(g′). By Proposition 3.4 ad(g)′′ is nilpotent, and this implies
that ad(g) is solvable. Thus ad(g)(r) = 0 if r is large enough, that is, g(r) ⊂ Z(g).
But then g(r+1) = 0 so that g is solvable.

Let us prove the converse. In an appropriate basis all the elements of ad(g) are
given by upper triangular matrices, by Lie’s theorem. Therefore, all the elements
of ad(g′), which are sums of expressions like ad(a)ad(b) − ad(b)ad(a), a, b ∈ g, are
given by strictly upper triangular matrices. This clearly implies that K(x, y) =
Tr(ad(x)ad(y)) = 0 for any x ∈ g, y ∈ g′. QED

Exercise. 1. Let g be the Lie algebra of affine transformations of the line. Compute
the Gram matrix of the Killing form of g. Check that the kernel of the Killing form
of g is g′, so that the Killing form is not identically zero.
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Cartan’s first criterion characterizes solvable Lie algebras as those for which the
derived Lie algebra g′ is contained in the kernel of the Killing form of g. The opposite
case are the algebras for which the Killing form is non-degenerate. To discuss the
properties of such algebras we need a lemma and a definition.

Lemma 3.6 If a and b are solvable ideals of a Lie algebra g, then the ideal a+ b is
solvable.

Proof This follows from a more general fact that any extension of a solvable Lie
algebra by a solvable Lie algebra is solvable. (If a is a solvable ideal of g, and g/a is
solvable, then so is g. Indeed, (g/a)(r) = 0 if r is large enough, so that g(r) ⊂ a. If
a(s) = 0, then g(r+s) = 0.) To conclude we note that the ideal a ⊂ a + b is solvable,
and (a + b)/a ' b/(a ∩ b) is a quotient of a solvable Lie algebra b, and hence is
solvable. QED

Definition 3.7 The union of all solvable ideals of g is called the radical of g. This
is the maximal solvable ideal of g.

The existence of the radical follows from Lemma 3.6. The last non-zero term of
the derived series of the radical is an abelian ideal of g. Therefore, the radical of g is
zero if and only if g has no non-zero abelian ideals. The Lie algebras possessing these
equivalent properties are called semisimple; these algebras and their representation
will be the main focus of this course.

Exercise. 2. Prove that the quotient of a Lie algebra g by its radical is semisimple.

3. A Lie algebra g is called simple if it has no ideals different from 0 and g, and
dim g > 1. Prove that any simple Lie algebra is semisimple.

4. Prove that sl(n) is a simple Lie algebra. (Hint: Let Eij, i 6= j, be the matrix
with the ij-entry equal to 1, and all the other entries equal to 0. If a ⊂ sl(n) is a
non-zero ideal, and a ∈ a, a 6= 0, then [Eij, a] ∈ a. Use this to prove that Emn ∈ a

for some m and n. Deduce that a = sl(n).)

Theorem 3.8 (Cartan’s second criterion) A Lie algebra g is semisimple if and
only if its Killing form is non-degenerate.

Proof If g is not semisimple, it contains a non-zero abelian ideal a 6= 0. Choose
a ∈ a, a 6= 0. We claim that ad(a) is in the kernel of the Killing form. Indeed,
let x ∈ g be an arbitrary element. Since a is an ideal, ad(x)ad(a) sends g to a,
and thus ad(a)ad(x)ad(a) sends g to 0. We see that ad(x)ad(a)ad(x)ad(a) = 0, or
(ad(x)ad(a))2 = 0, so that ad(x)ad(a) is nilpotent. The trace of a nilpotent linear
transformation is 0, by the Jordan normal form theorem. Therefore, K(x, a) =
Tr(ad(x)ad(a)) = 0 for any x ∈ g.

12



Conversely, if the Killing form of g is degenerate, its kernel is a non-zero ideal
of g. Indeed, if x ∈ g is such that K(x, y) = 0 for any y ∈ g, then K([zx], y) =
−K(x, [zy]) = 0 by Lemma 3.1 (ii). Call this ideal a. By Lemma 3.1 (iii) the
restriction of the Killing form of g to a is the Killing form of a, so that the Killing
form of a is identically zero. By Cartan’s first criterion a is solvable, and so g is not
semisimple. QED

Corollary 3.9 A Lie algebra g is semisimple if and only if g = ⊕gi, where the
gi are simple Lie algebras (a direct sum of vector spaces with component-wise Lie
bracket).

Proof The orthogonal complement a⊥ to an ideal a ⊂ g is also an ideal, as follows
from Lemma 3.1 (ii). The restriction of the Killing form of g to the ideal a ∩ a⊥,
which is the Killing form of this ideal by Lemma 3.1 (iii), is zero. Hence a ∩ a⊥

is a solvable ideal by Cartan’s first criterion, and thus a ∩ a⊥ = 0 because g is
semisimple. Thus g = a⊕ a⊥ is the direct sum of vector spaces. On the other hand,
[a, a⊥] ⊂ a ∩ a⊥ = 0 so that [ab] = 0 for any a ∈ a and b ∈ b. This means that
g = a⊕ a⊥ is the direct sum of Lie algebras. The Killing form is non-degenerate on
g, and a and a⊥ are orthogonal, thus the restriction of the Killing form of g to a is
non-degenerate. This restriction is the Killing form of a. Cartan’s second criterion
now says that a is semisimple, and similarly for a⊥. Applying this argument to a

and a⊥ we will have to stop eventually since g is finite dimensional. The resulting
components gi will be simple.

Conversely, any simple Lie algebra is semisimple, and the direct sum of semisimple
algebras is semisimple. (If g1 and g2 are semisimple Lie algebras, and a ⊂ g1 ⊕ g2

is an abelian ideal, then the projection of a to gi is an abelian ideal of gi, hence is
zero.). QED

Corollary 3.10 If a Lie algebra g is semisimple, then [gg] = g.

This follows from the previous corollary, since the statement is true for simple Lie
algebras.

Exercise 5. Let g be a Lie algebra, and a ⊂ g a semisimple ideal. Prove that there
exists an ideal b ⊂ g such that g = a⊕ b is a direct sum of Lie algebras.

4 Cartan subalgebras

The normalizer of a Lie subalgebra a ⊂ g is the set of x ∈ g such that [xa] ⊂ a.
Equivalently, the normalizer of a ⊂ g is the biggest subalgebra of g such that a is
an ideal of it.
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Definition 4.1 A subalgebra h ⊂ g is called a Cartan subalgebra of g if h is
nilpotent and equal to its own normalizer.

To digest this definition let us do some examples. Let us note that a proper ideal
a ( g cannot be a Cartan subalgebra.

Examples 1. If g is nilpotent, then g is its own Cartan subalgebra.

2. Not let g be solvable. We know by Corollary 2.9 that g′ is nilpotent. But
g′ is an ideal, so it cannot be a Cartan subalgebra! Assume g = t(2). Let h be
the subalgebra of diagonal matrices. It is abelian, hence nilpotent. But if x =
aE11 + bE22 + cE12 ∈ t(2) commutes with h, then [H, x] = 2c = 0, so x ∈ h. We
conclude that h is a Cartan subalgebra.

3. Let g = gl(2) or g = sl(2). Although n(2) is nilpotent, it is normalised by
diagonal matrices, so it cannot be a Cartan subalgebra. Let h be the subalgebra
of diagonal matrices. It is abelian, hence nilpotent. The relation [H,X±] = ±2X±
implies that an element of g that commutes with h must be in h, so h is a Cartan
subalgebra.

Cartan subalgebras will be our main tool in uncovering the structure and the
classification of semisimple Lie algebras. Our next goal is to prove that any Lie
algebra has a Cartan subalgebra.

Let n = dim g. Let Px(t) = det(tI − ad(x)) be the characteristic polynomial of
ad(x), x ∈ g; we write Px(t) = a0(x) + a1(x)t+ . . .+ an(x)tn, an(x) = 1.

Definition 4.2 The rank of g is the minimal value of m for which am(x) is not
identically equal to zero. Visibly, the rank is at most n. An element x ∈ g is regular
if am(x) 6= 0.

Exercises 1. A linear transformation is nilpotent if and only if its characteristic
polynomial is tn. In particular, ad(x) for x ∈ g is nilpotent if and only if an(x) is
the only non-zero coefficient of Px(t).

2. If n 6= 0, then a0(x) is identically zero. Hence the rank is at least 1. (Hint:
[x, x] = 0 so that x is in the kernel of ad(x), thus ad(x) has determinant 0.)

We see that the rank of g is an integer between 1 and n. It is easy to see that the
rank of sl(2) is 1 and H is a regular element (but X± are not).

Exercise Prove that a diagonalisable matrix x ∈ gl(n) is regular if and only if x
has n pairwise different eigenvalues. Prove that a non-diagonalisable matrix cannot
be regular.

Fix x ∈ g. Let

gλx = {y ∈ g|(ad(x)− λI)ry = 0 for some r}.
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For almost all λ ∈ k we have gλx = 0. By the Jordan normal form theorem we have
g = ⊕gλx. Note that λ is the only eigenvalue of ad(x) on gλx.

It is clear that dim g0
x is the smallest m for which am(x) 6= 0. Hence x ∈ g is

regular if and only if the function g → Z given by x 7→ dim g0
x takes its minimal

value on x.

Lemma 4.3 [gλx, g
µ
x] ⊂ gλ+µ

x

Proof The Jacobi identity is equivalent to

ad(x)[yz] = [ad(x)y, z] + [y, ad(x)z].

Hence we have

(ad(x)− (λ+ µ))[yz] = [(ad(x)− λ)y, z] + [y, (ad(x)− µ)z].

By induction on n this implies

(ad(x)− (λ+ µ))n[yz] =
n∑
r=1

(
n
r

)
[(ad(x)− λ)ry, (ad(x)− µ)n−rz].

If n is large, then one of r and n − r is large. Thus for any y ∈ gλx and z ∈ gµx all
the terms in the right hand side vanish. Thus [yz] ∈ gλ+µ

x . QED

In particular, g0
x is a subalgebra of g. Since [xx] = 0 we have x ∈ g0

x.

Proposition 4.4 If x ∈ g is regular, then g0
x is a Cartan subalgebra of g.

Proof Let x1 ∈ g0
x. We note that xt = tx1 +(1− t)x ∈ g0

x for any t ∈ C, hence ad(xt)
preserves gλx for every λ, by Lemma 4.3. If t is close to 0, then xt is close to x, and
so ad(xt) is close to ad(x). But then the eigenvalues of ad(xt) on gλx, λ 6= 0, are
close to a non-zero number, in particular, they can be assumed to be non-zero. Thus
g0
xt ⊂ g0

x. If g0
xt is strictly smaller than g0

x, then dim g0
xt < dim g0

x contradicts the
regularity of x. Therefore g0

xt = g0
x, in particular ad(xt) is nilpotent on the vector

space g0
x. This property is a polynomial condition on t. This polynomial vanishes

for all t in a small neighbourhood of 0 in C, hence it vanishes identically. Thus
ad(x1) is a nilpotent linear transformation of g0

x for every x1 ∈ g0
x. By the corollary

to Engel’s theorem g0
x is a nilpotent Lie algebra.

It remains to show that g0
x coincides with its normalizer. Let y ∈ g be such that

[yg0
x] ⊂ g0

x. In particular, [xy] ∈ g0
x. But then x is nilpotent on the linear span of y

and g0
x, so that y ∈ g0

x by the definition of g0
x. QED

Remark. It can be proved that for any two Cartan subalgebras h1, h2 of a Lie algebra
g there exists an automorphism φ : g → g such that φ(h1) = h2. This implies that
any Cartan subalgebra of g is of the form g0

x for a regular element x ∈ g.
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Theorem 4.5 Let h ⊂ g be a Cartan subalgebra of a complex Lie algebra g. There
exists a finite subset Φ ⊂ h∗ \ {0} such that g is a direct sum of h-invariant vector
spaces

g =
⊕

α∈Φ∪{0}

gα, g0 = h, (6)

satisfying the property that for each α ∈ Φ the space gα contains a common eigen-
vector of h with eigenvalue α : h → k, and this is the only eigenvalue of h on gα.
Moreover, if we set gα = 0 for α /∈ Φ ∪ {0}, then for any α, β ∈ h∗ we have

[gα, gβ] ⊂ gα+β. (7)

Proof For any x ∈ h the linear transformation ad(x) of h is nilpotent, hence h ⊂ g0
x.

It follows that for any x, y ∈ h each space gλx is ad(y)-invariant. Choose a basis
x1, . . . , xn of h. A linear function α : h → k is uniquely determined by its values
αi = α(xi). By induction on i one establishes the decomposition

g =
⊕

α1,...,αi∈C

gα1
x1
∩ . . . ∩ gαixi .

Define gα = gα1
x1
∩ . . . ∩ gαnxn . Then we obtain

g =
⊕
α∈h∗

gα.

Each gα is h-invariant since h ⊂ g0
h for any h ∈ h. Let us denote by Φ the set of

non-zero linear functions α ∈ h∗ such that gα 6= 0. The set Φ is finite since g is
finite-dimensional. Thus we obtain the decomposition in (6). By Lie’s theorem gα
contains a common eigenvector of h. For any common eigenvector v ∈ gα we have
v ∈ gαixi so that ad(xi)v = αiv, which says that ad(h)v = α(h)v.

It remains to show that g0 = h. If this is not true, Proposition 2.3 shows that h

kills a non-zero vector in g0/h. Then [h, x] ⊂ h for some x /∈ h, but this contradicts
the condition that h is its own normalizer.

The last property follows from Lemma 4.3. QED

Corollary 4.6 For each α ∈ Φ and any x ∈ gα the linear transformation ad(x) of
g is nilpotent.

Proof Recall that Φ does not contain 0, so that α 6= 0. By (7) ad(x)r sends each
space gβ to gβ+rα. Since the direct sum (6) is finite, for some large r we shall have
ad(x)r = 0. QED

The elements of Φ are called the roots of g with respect to h, and the gα are called
the root spaces.

The root decomposition (6) behaves nicely regarding the Killing form.
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Lemma 4.7 (i) If α, β ∈ Φ ∪ {0} are such that α + β 6= 0, then K(gα, gβ) = 0.

(ii) For x, y ∈ h we have

K(x, y) =
∑
α∈Φ

α(x)α(y)dim gα.

Proof (i) Applying (7) twice we see that [gα[gβgγ]] ⊂ gα+β+γ so that if x ∈ gα,
y ∈ gβ, then ad(x)ad(y) sends the root space gγ into gα+β+γ. Since there are only
finitely many terms in the direct sum (6), the linear transformation ad(x)ad(y) is
nilpotent whenever α + β 6= 0, and hence K(x, y) = Tr(ad(x)ad(y)) = 0.

(ii) By Lie’s theorem every subspace gα has a basis in which all the elements of h
act by upper-triangular matrices. In particular, ad(x) acts by an upper-triangular
matrix with α(x) on the main diagonal, and similarly for y. Thus Tr(ad(x)ad(y)) is
given by the formula in (ii). QED

5 Semisimple Lie algebras

The root decomposition (6) has particularly nice properties when g is a semisimple
Lie algebra.

Theorem 5.1 Let g be a semisimple Lie algebra. Then the following properties
hold:

(i) Φ spans h∗;

(ii) the restriction of K(·, ·) to h is non-degenerate;

(iii) h is abelian;

(iv) Φ = −Φ.

Proof (i) If Φ is contained in a proper subspace of h∗, then there exists x ∈ h, x 6= 0,
such that α(x) = 0 for all α ∈ Φ. (For any subspace of h∗ of codimension 1 there
exists x ∈ h, x 6= 0, such that this subspace is the set of linear functions f vanishing
at x, f(x) = 0.) This x ∈ h = g0 is orthogonal to the gα for α 6= 0 by Lemma 4.7
(i), and it is orthogonal to h by Lemma 4.7 (ii). However, the Killing form on g has
no kernel by Cartan’s second criterion. This contradiction proves that Φ spans h∗.

(ii) By Lemma 4.7 (i) h is orthogonal to ⊕α∈Φgα, and since the Killing form is
non-degenerate, its restriction to h is also non-degenerate.

(iii) Let x ∈ [hh]. Then the eigenvalue of ad(x) on gα is 0, that is, α(x) = 0 for
any α ∈ Φ. By (ii) we see that x = 0.

(iv) The only space to which gα can be non-orthogonal is g−α, and this must be
non-zero since the Killing form is non-degenerate. QED

Comment A part of this result can be restated by saying that

g = h⊕
⊕

(gα ⊕ g−α)
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is an orthogonal direct sum, and the restriction of the Killing form to h and to each
gα⊕g−α is non-degenerate. Since the form is zero on each gα, the Killing form induces
a non-degenerate pairing (bilinear form) gα × g−α → C. Let hα = [gαg−α] ⊂ h.

Lemma 5.2 For each α ∈ Φ we have

(i) hα ∩Ker (α) = 0 ⊂ h;

(ii) dim hα = 1;

(iii) dim gα = 1, and gnα = 0 for every real n > 1;

(iv) every h ∈ h acts on gα as the multiplication by α(h).

Proof (i) Choose any β ∈ Φ. For any x ∈ gα and y ∈ g−α we consider the action of
ad([xy]) on the “α-string of β”, that is, the space ⊕n∈Z gβ+nα. This space is both
ad(x)- and ad(y)-invariant, hence the trace of ad([xy]) = ad(x)ad(y) − ad(y)ad(x)
is zero. On the other hand, for any h ∈ h the trace of ad(h) acting on this space is(∑

n∈Z

dim (gα+nβ)

)
β(h) + rα(h),

for some r ∈ Z. Applying this to h = [xy] ∈ hα we see that if α([xy]) = 0, then
β([xy]) = 0 as well. Since this is true for any β ∈ Φ, and Φ spans h∗ by Theorem
5.1 (i), we must have [xy] = 0.

(ii) By (i) it is enough to show that hα 6= 0. By the non-degeneracy of the
Killing form we can find x ∈ gα and y ∈ g−α such that K(x, y) 6= 0. This implies
[xy] 6= 0. Indeed, otherwise ad(x) and ad(y), which are nilpotent by Corollary 4.6,
commute. But since the composition of two commuting nilpotent transformations
is nilpotent, ad(x)ad(y) is a nilpotent linear transformation of g, which implies
K(x, y) = Tr(ad(x)ad(y)) = 0.

(iii) By Lie’s theorem h has an eigenvector y ∈ g−α (that is, a common eigenvector
of all the elements of h with eigenvalue −α ∈ h∗). Choose x as in (ii) so that [xy] 6= 0;
this implies α([xy]) 6= 0 by (i). Define V ⊂ g to be the linear span of y, h and the
spaces gnα for all real n ≥ 1. This is subspace of g, so V is finite-dimensional. By (7)
the vector space V is invariant under ad(x). But V is also invariant under the action
of ad(y): this follows from (7), the facts that [yy] = 0 and [yh] = −[hy] = α(h)y.
Hence V is invariant under ad([xy]) = ad(x)ad(y)− ad(y)ad(x). By this formula we
also conclude that the trace of ad([xy]) in V is zero. On the other hand, this trace
equals (

−1 +
∑

n∈R, n≥1

n dim (gnα)

)
α([xy]) = 0,

since for any n, ad(h) is upper-triangular on gnα with nα(h) on the main diagonal.
By part (i) we have α([xy]) 6= 0, thus (iii) follows.
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(iv) By (iii) gα is spanned by an eigenvector x of h (cf. the beginning of the proof
of (iii)). QED

Comment Statement (iv) implies that all elements of h are diagonal in the basis of
g consisting of a non-zero vector in each gα, α ∈ Φ, and some basis of h.

To each α ∈ Φ we associate its root vector hα ∈ h defined as an element of h such
that α(h) = K(hα, h) for any h ∈ h. The root vector hα exists and is unique by the
non-degeneracy of the restriction of the Killing form to h (the form K defines an
isomorphism h ' h∗, under which hα ∈ h corresponds to α ∈ h∗).

Lemma 5.3 The 3-dimensional vector subspace sα = hα ⊕ gα ⊕ g−α is a Lie subal-
gebra of g, isomorphic to sl(2).

Proof For any h ∈ h, and any x ∈ gα, y ∈ g−α such that K(x, y) = 1, we have

K([xy], h) = −K(y, [xh]) = K(y, [hx]) = α(h)K(x, y) = α(h),

hence hα = [xy]. Thus x, y, hα is a basis of sα. By Lemma 5.2 (i) we have α(hα) =
K(hα, hα) 6= 0. Define

Hα =
2

K(hα, hα)
hα.

Then α(Hα) = 2. We now choose Xα ∈ gα and X−α ∈ g−α such that [XαX−α] = Hα.
We obtain

[XαX−α] = Hα, [HαXα] = 2Xα, [HαX−α] = −2X−α,

where the last two equalities follow from α(Hα) = 2. We identify Hα, Xα, X−α with
the natural basis H, X+, X− of sl(2), thus proving the lemma. QED

Proposition 5.4 (i) If α, β ∈ Φ, then β(Hα) ∈ Z, and β − β(Hα)α ∈ Φ.

(ii) If α + β 6= 0, then [gαgβ] = gα+β.

Proof (i) If β = ±α the statement is already proved, so assume that α and β are not
collinear. We have a representation of sα on the α-string of β, that is, on the space
⊕n∈Z gβ+nα. Statement (i) is a consequence of the following general fact about the
representations of sl(2):

Claim Let sl(2)→ gl(V ) be a finite-dimensional representation. Then all the eigen-
values of H in V are integers, and if n ≥ 0 is an eigenvalue of v, then n − 2, n −
4, . . . ,−n are the eigenvalues of the following H-eigenvectors: X−v, X

2
−v, . . . , X

n
−v,

respectively. If n ≤ 0, then n+ 2, n+ 4, . . . ,−n are the eigenvalues of the following
H-eigenvectors: X+v, X

2
+v, . . . , X

−n
+ v, respectively.

Indeed, a non-zero vector v ∈ gβ is an eigenvector of Hα with eigenvalue β(Hα), so
this must be an integer. If n = β(Hα) ≥ 0, then Xn

−αv is an eigenvector of Hα, and
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so is non-zero; therefore, gβ−nα 6= 0. If n = β(Hα) ≤ 0, then Xn
αv is an eigenvector

of Hα, and so is non-zero; therefore, gβ+(−n)α 6= 0. This proves (i).

Proof of Claim Let v ∈ V , v 6= 0, be a non-zero vector such that Hv = λv. We have
HX+v = [HX+]v + X+Hv = (λ + 2)X+v, and, similarly, HX−v = (λ − 2)X−v.
This implies that X i

+v, if non-zero, is an eigenvector of H with eigenvalue λ + 2i,
and, similarly, Xj

−v, if non-zero, is an eigenvector of H with eigenvalue λ−2j. Since
V is finite-dimensional, we let e (respectively, f) be the last non-zero term in the
sequence v, X+v, X

2
+v, . . . (respectively, v, X−v, X

2
−v, . . .). Thus e is an eigenvector

of H with eigenvalue λ+ 2m, for some m ∈ Z, m ≥ 0. Similarly, f is an eigenvector
of H with eigenvalue λ − 2l, for some l ∈ Z, l ≥ 0. For r ≥ 0 define er = Xr

−e/r!,
and e−1 = 0 (respectively, fr = Xr

+f/r!, and f−1 = 0). The following identities are
true for all r ≥ 0:

Her = (λ+ 2m− 2r)er, X−er = (r+ 1)er+1, X+er = (λ+ 2m− r+ 1)er−1. (8)

The first and second properties are clear, so let us prove the last one. We argue by
induction on r. For r = 0 we have X+e = 0 = e−1, so that the formula is true. Let
r ≥ 1. Then we have

rX+er = X+X−er−1 = [X+X−]er−1 +X−X+er−1 =
Her−1 + (λ+ 2m− r + 2)X−er−2 =
((λ+ 2m− 2r + 2) + (r − 1)(λ+ 2m− r + 2))er−1 =
r(λ+ 2m− r + 1)er−1,

hence the last formula of (8) is true. In a similar way we obtain

Hfr = (λ− 2l + 2r)fr, X+fr = (r + 1)fr+1, X−fr = (−λ+ 2l − r + 1)fr−1. (9)

Since V is finite-dimensional, there exists an n ≥ 0 such that en is the last non-
zero term in the sequence e, e1, e2, . . . Then 0 = X+en+1 = (λ + 2m− n)en implies
that λ = n− 2m ∈ Z. This shows that all eigenvalues of H in V are integers.

Consider the case λ ≥ 0. Since n = λ + 2m, n − 2, . . . ,−n = λ + 2m − 2n
are eigenvalues of H (corresponding to eigenvectors e, e1, . . . , en), and m ≥ 0 the
integers λ, λ− 2, . . . ,−λ are eigenvalues of H.

In the case λ ≤ 0, define n ≥ 0 such that fn is the last non-zero term in the
sequence f, f1, f2, . . . The integers −n = λ − 2l, −n + 2, . . . , n are eigenvalues of
H (corresponding to eigenvectors f, f1, f2, . . . , fn). Since l ≥ 0, the integers λ, λ−
2, . . . ,−λ are eigenvalues of H. The claim is proved.

Proof of Proposition 5.4 (ii). The proof of the claim shows that if l is a non-
negative integer such that either l or −l is an eigenvalue of H in V , then V contains
a linearly independent set of vectors v−l, v−l+2, . . . , vl−2, vl such that Hvn = nvn,
X+vn is a non-zero multiple of vn+2 for n 6= l, X−vn is a non-zero multiple of vn−2

for n 6= −l, and X+vl = 0, X−v−l = 0, see (8) and (9).
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We can assume that α 6= ±β and α + β ∈ Φ. Let q ≥ 1 be the maximal number
such that β + qα ∈ Φ, and let p ≥ 0 be the maximal number such that β − pα ∈ Φ.
The corresponding eigenvalues of Hα are β(Hα) − 2p and β(Hα) + 2q. Since these
are respectively the smallest and the greatest eigenvalues of Hα in ⊕ngβ+nα, by what
has been said in the previous paragraph we see that β(Hα)− 2p = −(β(Hα) + 2q),
and the integers of the same parity in the range

[β(Hα)− 2p, β(Hα) + 2q] = [−(p+ q), p+ q]

are eigenvalues of Hα. The corresponding eigenvectors can be chosen as X i
αu, i =

0, 1, . . . , p+q, where u is non-zero vector in gβ−pα. Thus X i
αu, where 0 ≤ i ≤ p+q, is

a non-zero vector in gβ+(i−p)α. In particular, Xp
αu generates gβ, and Xp+1

α u generates
gβ+α. This proves (ii). QED

Remark. For future reference we point out that in the notation of this proof β(Hα) =
p− q.

6 Root systems

We now summarize some of the previous constructions. Let g be a semisimple Lie
algebra over C with Cartan subalgebra h. Let Φ ⊂ h∗ be the set of roots of g, that is,
the eigenvalues of the adjoint action of h on g. The non-degeneracy of the restriction
of the Killing form of g to h allows us to define hα ∈ h such that α(h) = K(hα, h)
for any h ∈ h. Lemma 5.2 (i) implies that K(hα, hα) 6= 0, which permits us to define

Hα =
2

K(hα, hα)
hα.

For any α, β ∈ Φ we define the Cartan numbers as

nβα = β(Hα) = 2
K(hα, hβ)

K(hα, hα)
.

By Lemma 5.4 the Cartan numbers are integers.

Define hR to be the vector space over R spanned by the Hα, α ∈ Φ. Since nβα ∈ Z,
any root defines a linear function hR → R, that is to say Φ ⊂ h∗R.

Lemma 6.1 The restriction of the Killing form of g to hR is a positive definite
symmetric bilinear form.

Proof By Lemma 4.7 (ii) for any complex semisimple Lie algebra g, and any x, y ∈ h

we have
K(x, y) =

∑
α∈Φ

α(x)α(y).
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Thus for x ∈ hR we have K(x, x) =
∑

α∈Φ α(x)2. If this equals 0, then α(x) = 0 for
all α ∈ Φ, but since Φ spans h∗, by Theorem 5.1 (i), we must have x = 0. QED

One consequence of this lemma is that the obvious sum h = hR+ihR of real vector
spaces is a direct sum. Indeed, if v ∈ hR ∩ ihR, then K(v, v) ≥ 0 and K(v, v) ≤ 0,
so that v = 0. This can be rephrased by saying that hR is a real form of h, or that
h is the complexification of hR.

We have K(Hα, Hα) = 4/K(hα, hα), so that hα differs from Hα by a non-zero
positive multiple. In particular, hα ∈ hR.

By Lemma 6.1 the restriction of the Killing form of g to hR is non-degenerate.
Hence it defines an isomorphism hR ' h∗R sending x to the linear form K(x, ·). Under
this isomorphism hα ∈ hR corresponds to α ∈ h∗R. Let us write (·, ·) for the positive
definite symmetric bilinear from on h∗R which corresponds to the Killing form under
this isomorphism. Then we have

(α, β) = K(hα, hβ) = α(hβ) = β(hα),

hence

2
(α, β)

(α, α)
= β(Hα) = nβ,α ∈ Z.

One immediately checks that the linear transformation

sα(x) = x− 2
(α, x)

(α, α)
α = x− x(Hα)α

preserves the form (·, ·), and is an involution. Moreover, sα(α) = −α, and sα(x) = x
for all vectors x ∈ hR orthogonal to α. Such an orthogonal transformation is called
the reflection in α. Lemma 5.4 says that sα(Φ) = Φ for any α ∈ Φ.

The pair (h∗R,Φ) is thus an example of a pair (V,R) consisting of a finite set R
of non-zero vectors spanning a real vector space V equipped with a positive definite
symmetric bilinear form (·, ·), such that

(1) any two distinct proportional vectors of R are negatives of each other;

(2) the reflections with respect to the elements of R preserve R; and

2
(α, β)

(α, α)
∈ Z for any α, β ∈ Φ.

Definition 6.2 A finite set of vectors R in a real vector space V with a positive
definite symmetric bilinear form satisfying (1) and (2) is called a root system.
The elements of R are called roots, and the dimension of V is called the rank of
R. The group of linear transformations of V generated by the reflections in the roots
of R is called the Weyl group W = W (R).
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Since R spans V , and W permutes the roots, W is a subgroup of the symmetric
group on |R| elements. In particular, W is finite.

Note that multiplying the scalar product by a positive multiple does not change
the property of R to be a root system. More generally, we have the following

Definition 6.3 The roots systems (V1, R1) and (V2, R2) are equivalent if the exists
an isomorphism of vector spaces φ : V1 → V2 such that φ(R1) = R2 and for some
constant c ∈ R∗ we have (φ(x), φ(y)) = c(x, y) for any x, y ∈ V1.

The importance of the concept of a root system is due to the fact that the iso-
morphism classes of complex semisimple Lie algebras bijectively correspond to equiv-
alence classes of root systems. This is a central result of this course. We mentioned
earlier (without proof) that for any two Cartan subalgebras h1, h2 of a Lie alge-
bra g there exists an automorphism φ : g → g such that φ(h1) = h2. Also, the
Killing form is preserved by automorphisms, by Lemma 3.1 (i). Thus for a given
complex semisimple Lie algebra the various choices of a Cartan subalgebra give rise
to equivalent root systems.

We now turn to a study of abstract root systems.

Lemma 6.4 Let (V,R) be a root system. The set of vectors α∗ = 2
(α,α)

α is a root
system in V , called the dual root system and denoted by R∗. The Cartan numbers
of R∗ are n∗βα = nαβ. The Weyl group of R∗ is canonically isomorphic to W (R).

Proof Indeed, R∗ is a finite set of non-zero vectors which span V . Property (1) holds
because it holds for R. The reflection in α∗ is the same orthogonal transformation
as the reflection in α, and hence it preserves R∗. It follows that W (R∗) = W (R).
Finally,

n∗βα = 2
(β∗, α∗)

(α∗, α∗)
= 2

(β, α)

(β, β)
= nαβ. QED

In the above context the dual root system Φ∗ consists of the vectors Hα, α ∈ Φ
(we identify hR and h∗R using the Killing form on hR, as usual).

Let us explore which metric properties of roots follow from the definition of a root
system. We write |x| = (x, x)1/2 for the length of a vector x. Let α, β ∈ R be roots,
and φ be the angle between α and β. Then (α, β) = |α| · |β| · cos(φ). It follows that

nβα = 2
|β|
|α|

cos(φ), whence 4 cos2(φ) = nβαnαβ ∈ Z. (10)

Thus cos(φ) can be 0, ±1/2, ±
√

2/2, ±
√

3/2 or ±1. The last case corresponds to
collinear roots. If φ = π/3 or −π/3 we must have nβα = ±1, and then α and β have
the same length. If φ = π/4 or 3π/4, then the square of the length of one of the
roots is twice that of the other. Finally, if φ = π/6 or 5π/6, then the square of the
length of one of the roots is three times that of the other. We note the following
curious property.
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Lemma 6.5 If 0 < φ < π/2, then α− β ∈ R.

Proof If 1, 2 or 3 is written as a product of two positive integers, then one of the
factors is 1. Up to swapping α and β we can assume that nβα = 1. The reflection
in α sends β to β − nβαα, thus β − α ∈ R. Since R = −R, we are done. QED

Exercises: classical root systems In the following cases prove that R is a root
system in V , determine the number of roots in R, find its Weyl group and its dual
root system.

An Consider the vector space Rn+1 with basis e1, . . . , en+1 and the standard scalar
form, and the subspace V consisting of the vectors with the zero sum of coordinates.
Let R be the set of vectors of the form ei − ej, i 6= j.

Bn Let V = Rn with basis e1, . . . , en and the standard scalar form. Let R be the
set of vectors of the form ±ei or ±ei ± ej, i 6= j.

Cn The same V , and the set of vectors of the form ±2ei or ±ei ± ej, i 6= j.

Dn The same V , and the set of vectors ±ei ± ej, i 6= j.

Definition 6.6 A root system R ⊂ V is irreducible if V cannot be written as an
orthogonal direct sum V = V1 ⊕ V2 such that R = R1 ∪ R2, where Ri ⊂ Vi, i = 1, 2,
is a root system.

In the opposite case R is called reducible, and we write R = R1 × R2. All
irreducible root systems other than An, Bn, Cn, Dn are called exceptional.

Exercises: exceptional isomorphisms Prove that the following root systems are
equivalent: A1 ' B1 ' C1, C2 ' B2, D2 ' A1 × A1, D3 ' A3.

Definition 6.7 A subset S of a root system R ⊂ V is called a basis of R if S is a
basis of V , and every root of R is an integral linear combination of the elements of
S all of whose coefficients have the same sign. The elements of S are called simple
roots, and the elements of R that can be written as linear combinations of simple
roots with positive coefficients, are called positive roots. The set of positive roots
is denoted by R+.

Proposition 6.8 Any root system has a basis. Moreover, any basis of R ⊂ V can
be obtained by the following construction. Let ` : V → R be a linear function such
that `(α) 6= 0 for any α ∈ R. Then the roots α ∈ R such that `(α) > 0, which
cannot be written as α = β + γ, where β, γ ∈ R, and `(β) > 0, `(γ) > 0, form a
basis of R.

Proof Choose such a linear function `. Let us prove that the corresponding set S is a
basis of R. It is clear that any root α ∈ R such that `(α) > 0 is a linear combination
of the elements of S with positive integral coefficients. Next, we show that the angles
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between the elements of S are obtuse or right. Otherwise, by Lemma 6.5, γ = α−β
is a root, and so is −γ. If `(γ) > 0, then α cannot be in S. If `(−γ) > 0, then
β cannot be in S. It remains to show that any set S of vectors α ∈ V such that
`(α) > 0 for each α ∈ S, and all the angles between these vectors are right or obtuse,
is linearly independent. For contradiction, suppose that there is a non-trivial linear
combination of the elements of S that equals 0. The coefficients cannot have the
same sign, otherwise `(0) = 0 would have to be positive. So there exist non-empty
subsets S ′ ⊂ S, S ′′ ⊂ S, S ′ ∩ S ′′ = ∅, and numbers yβ > 0, zγ > 0 such that∑

β∈S′
yββ =

∑
γ∈S′′

zγγ 6= 0.

Call this vector v. Then

0 ≤ (v, v) =
∑

yβzγ(β, γ) ≤ 0,

so that v = 0, a contradiction. We proved that S is a basis of R.

Remark Let us denote by S` the basis of R ⊂ V defined by a linear function
` : V → R. It is clear that the positive roots are precisely the roots α such that
`(α) > 0; we denote this set by R+

` .

End of proof of Proposition. Conversely, there exists a linear function ` that takes
positive values on the elements of a basis S. It is enough to show that S = S`. Recall
that R+ is the set of positive roots with respect to the basis S. We have R+ ⊂ R+

` ,
but since R = R+ ∪ −R+ = R+

` ∪ −R
+
` we have R+ = R+

` . No element of S can
be written as a sum of two elements of R+ = R+

` (otherwise we get two different
decompositions of this element with respect to the basis S). Thus all elements of S
are indecomposable and hence S ⊂ S`. Since each set is a basis of V , we must have
S = S`. QED

What are the linear functions ` : V → R giving rise to the same basis S = S`?
The set of such `’s is called the Weyl chamber defined by S. By the previous proof
this set is given by the inequalities `(α) > 0 for any α ∈ S. We will show that the
Weyl chambers are precisely the connected components of the complement in the
real vector space V ∗ to the finite union of hyperplanes `(β) = 0, β ∈ R. For this it
is enough to show that for any ` ∈ V ∗ there exists w ∈ W such that `(wα) ≥ 0 for
all α ∈ S. In this case ` is in the Weyl chamber corresponding to the basis wS. But
how to choose such a w?

Lemma 6.9 Define

ρ =
1

2

∑
α∈R+

α.

Then sα(ρ) = ρ− α for any α ∈ S.
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Proof Any positive root β 6= α is sent by sα to a positive root. (The coefficients of
β and sα(β) = β − nβαα corresponding to the simple roots other than α are the
same, in particular, they are positive. Thus sα(β) cannot be negative, and hence is
positive.) Since sα(α) = −α the statement follows. QED

Definition 6.10 Let S be a basis of a root system R. The matrix of size r × r,
where r = |S| is the rank of R, whose entries are the Cartan numbers nαβ, is called
the Cartan matrix of R.

Since nαα = α(Hα) = 2, the diagonal entries of the Cartan matrix are equal to
2. The other entries can be 0, −1, −2 or −3 (since the angles between the simple
roots are right or obtuse).

Our next goal is to show that the Cartan matrix of R is well defined, that is, it
does not depend on the choice of a basis S ⊂ R, and defines the root system R up
to isomorphism.

Exercises Root systems of rank 1 and 2. 1. What are the root systems of rank 1?
Give an example of a semisimple Lie algebra which defines such a root system.

2. Let R ⊂ V , dimV = 2, be a root system of rank 2. Then R has a basis {α, β}.
Write all possible Cartan matrices of R, draw their respective root systems in R2,
compute their Weyl groups. (Hint: make a list of possible angles φ between α and
β, taking into account that φ is right or obtuse.)

3. List all pairs of dual root systems of rank 2.

Exercises: exceptional root systems In the examples below show that R is a
root system, make a list of elements of R, find its Weyl group and its dual root
system.

1. The unique exceptional root system of rank 2 is called G2. Show that it can
be identified with the set of integers of norm 1 or 3 in Q(

√
−3). (Describe the

remaining root systems of rank 2 in a similar way.)

2. Consider the lattice L ⊂ R4 generated by the basis vectors ei and the vector
(e1 + e2 + e3 + e4)/2. Let R be the set of vectors v ∈ L such that (v, v) = 1 or
(v, v) = 2. This root system is called F4.

3. Consider the lattice L ⊂ R8 generated by the basis vectors ei and the vector
(e1 + . . . + e8)/2, and let L0 ⊂ L be the sublattice consisting of the vectors with
even sum of coordinates. Let R be the set of vectors v ∈ L′ such that (v, v) = 2.
This root system is called E8.

4. The intersection of the root system of type E8 with the linear span of e1, . . . , e6

(resp. e1, . . . , e7) defines a root system in R6 (resp. R7). This root system is called
E6 (resp. E7). (Describe the root system obtained as the intersection of E8 with
the linear span of e1, . . . , en for n = 2, 3, 4, 5.)
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Theorem 6.11 Let S be a basis of the root system R. Then

(i) any other basis of R has the form wS for some w ∈ W ;

(ii) R = WS, that is, any root can be obtained from a simple root by applying an
element of W ;

(iii) the Weyl group W is generated by the reflections in the simple roots sα, α ∈ S;

(iv) if the root systems R1 ⊂ V1 and R2 ⊂ V2 have bases S1 and S2, respectively,
with equal Cartan matrices, then R1 and R2 are equivalent.

Proof (i) By Proposition 6.8 any basis has the form S` for some ` ∈ V ∗, `(β) 6= 0 for
all β ∈ R. Let WS be the subgroup of W generated by the reflections in the simple
roots. Choose w ∈ WS such that `(wρ) is maximal, where ρ is defined in Lemma
6.9. Then

`(wρ) ≥ `(wsαρ) = `(wρ)− `(wα),

where the last equality comes from Lemma 6.9. Thus `(wα) > 0 for all α ∈ S. Hence
wS ⊂ R+

` , and so wR+ ⊂ R+
` . We have seen that this implies wR+ = R+

` . Since α
is indecomposable as an element of R+, wα is indecomposable as an element of R+

` .
We conclude that wS ⊂ S`, so wS = S` since both sets have the same number of
elements.

(ii) Let β ∈ R. Choose a linear form `0 ∈ V ∗ such that `0(β) = 0 but `0(γ) 6= 0
for all roots γ ∈ R, γ 6= ±β. There exists a small deformation ` of `0 such that
|`(γ)| > `(β) > 0. Then β ∈ S` (see Proposition 6.8), so that β is in the W -orbit of
some simple root, by (i).

(iii) It is enough to prove that sβ ∈ WS. By (ii) we have β = wα for some w ∈ WS,
but

sβ(x) = swα(x) = w · sα · w−1(x),

whence sβ ∈ WS.

(iv) The bijection between S1 and S2 uniquely extends to an isomorphism V1 → V2.
The Cartan matrix allows us to identify all reflections in the simple roots. By (iii),
the respective Weyl groups are canonically isomorphic. Now (ii) implies that the
isomorphism V1 → V2 identifies R1 with R2. QED

Remark. It can be proved that the Weyl group W = W (R) acts simply transitively
on the set of Weyl chambers (equivalently, on the set of bases) of R.

Definition 6.12 Let S be a basis of a root system R of rank n with the Cartan
matrix (nαβ), α, β ∈ S. The Dynkin diagram of R is the graph with n vertices
defined by the simple roots α ∈ S. The vertices α 6= β are joined by n = nαβnβα
lines. When n > 1, we have (α, α) 6= (β, β) and in this case we draw an n-fold
arrow from the longer root to the shorter root.

Since nαβnβα = 4 cos2(φ), the distinct vertices can be connected by 0, 1, 2 or 3
lines. The roots α and β are not connected if and only if α and β are perpendicular.
Thus the Dynkin diagram of R is connected if and only if R is irreducible.
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Proposition 6.13 A root system is uniquely determined by its Dynkin diagram.

Proof We have seen in Theorem 6.11 (iv) that two root systems with identical Cartan
matrices are equivalent. It remains to show that the Cartan matrix can be recovered
from the Dynkin diagram. Indeed, nαα = 2 for any α ∈ S. Let us use (10), taking
into account the fact that all the angles between simple roots are right or obtuse.
If α and β are not connected, then nαβ = nβα = 0. If α and β are connected
by one line, then nαβ = nβα = −1. If α and β are connected by two lines, then
cos(φ) = −

√
2/2, and hence nαβ = −2, nβα = −1, if the weight of α is greater than

the weight of β. If α and β are connected by three lines, then cos(φ) = −
√

3/2, and
hence nαβ = −3, nβα = −1, if the weight of α is greater than the weight of β. QED

Exercise Check that the following sets are bases of the classical root systems.
Compute their Cartan matrices and Dynkin diagrams. (See [1] or [8] for the explicit
description of bases in exceptional root systems.)

An e1 − e2, e2 − e3, . . . , en − en+1

Bn e1 − e2, e2 − e3, . . . , en−1 − en, en
Cn e1 − e2, e2 − e3, . . . , en−1 − en, 2en

Dn e1 − e2, e2 − e3, . . . , en−1 − en, en−1 + en

Theorem 6.14 Any irreducible root system is one of the classical root systems An,
n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3, Dn, n ≥ 4, or one of the exceptional root systems
G2, F4, E6, E7, E8.

Proof We temporarily forget the weights of vertices. By multiplying every simple
root by an appropriate non-zero multiple we ensure that all the resulting vectors
have length 1. The possible angles between them are π/2, 2π/3, 3π/4 or 5π/6. Call
such a system of vectors an allowable configuration. The allowable configurations
can be classified using elementary geometry, see [4], pages 130–135. Then it is not
hard to prove that the only Dynkin diagrams that an irreducible root system can
have are those listed above. QED

7 Classification and examples of semisimple Lie

algebras

Let g be a semisimple complex Lie algebra, h its Cartan subalgebra, and Φ ⊂ h∗R the
corresponding root system. The choice of a basis S of Φ allows us to define a system
of generators of g as follows. To each simple root α ∈ S we associate Hα ∈ hR as
before, and Xα ∈ gα and X−α ∈ g−α such that [Xα, X−α] = Hα.
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Theorem 7.1 (Uniqueness and existence) (i) The semisimple Lie algebra g is
generated by 3n elements Hα, Xα, X−α for α ∈ S.

(ii) These generators satisfy the relations (for all α, β ∈ S)

[Hα, Hβ] = 0, [Xα, X−α] = Hα, [Hα, Xβ] = nβαXβ, [Hα, X−β] = −nβαX−β,
[Xα, X−β] = 0, if α 6= β, and

(11)

ad(Xα)−nβα+1(Xβ) = ad(X−α)−nβα+1(X−β) = 0 if α 6= β. (12)

(iii) Any two Lie algebras with such generators and relations are isomorphic.

(iv) For any root system R there exists a complex semisimple Lie algebra whose root
system is equivalent to R.

Proof (i) It is clear that Hα, α ∈ S, span the Cartan subalgebra h. Because of the
decomposition (6) it is enough to show how to generate gγ for every positive (not
necessarily simple) root γ ∈ Φ, starting from Xα, α ∈ S. Write γ =

∑
α∈Smα(γ)α,

and set m(γ) =
∑

α∈Smα(γ). Let us show by induction in m(γ) that for every
γ ∈ Φ+ \ S there exists a simple root α ∈ S such that γ − α ∈ Φ+. Indeed, we
cannot have (γ, α) ≤ 0 for all α ∈ S since otherwise the vectors in S∪{α} are linearly
independent (by the argument in the proof of Proposition 6.8). If (γ, α) > 0, then
γ − α ∈ Φ, by Lemma 6.5. Since mβ(γ) > 0 for some simple root β 6= α, and every
root is a linear combination of simple roots with coefficients of the same sign, we see
that γ − α ∈ Φ+. By induction in m(γ) we conclude that γ = α1 + . . .+ αm, where
αi ∈ S, and the partial sums α1 + . . . + αi are roots for all 1 ≤ i ≤ m. Applying
Proposition 5.4 (ii) m times we see that gγ is spanned by

[Xα1 [Xα2 . . . [Xαm−1Xαm ]]] 6= 0.

This finishes the proof of (i).

(ii) All the relations in (11) are clear except [Xα, X−β] = 0. But if this element is
not zero, then gα−β 6= 0. However, α − β 6∈ Φ since the coefficient of α is positive,
whereas that of β is negative.

Similarly, ad(Xα)−nβα+1(Xβ) has weight β − nβαα + α = sα(β − α), which is not
in Φ because β − α 6∈ Φ, as seen above. Thus this element is zero.

(iii) and (iv) This (complicated) proof is omitted, see [4]. However, the existence
theorem for classical Lie algebras will follow from their explicit descriptions (see
below). QED

This shows that a semisimple Lie algebra is determined by its root system up
to isomorphism, and that every root system is obtained from some semisimple Lie
algebra. Irreducible root systems correspond to simple Lie algebras.

Definition 7.2 For a semisimple Lie algebra g = h⊕
⊕

α∈Φ gα define

n+ = ⊕α∈Φ+gα , n− = ⊕α∈Φ+g−α , b = h⊕ n+.
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Proposition 7.3 We have g = n− ⊕ h⊕ n+, where n+ and n− are nilpotent subal-
gebras of g, and b ⊂ g is a solvable subalgebra. Moreover, [bb] = n+.

Proof By Engel’s theorem it is enough to prove that ad(x) is nilpotent for every
x ∈ n+. Consider the following filtration in n+ = n1 ⊃ n2 ⊃ n3 ⊃ . . . given by

nm =
⊕

γ∈Φ+,m(γ)≥m

gγ ,

with the notation m(γ) from the proof of Theorem 7.1 (i). Then ad(x) sends nm to
nm+1, and so this linear transformation is nilpotent.

From the definition of n+ it follows that [hn+] = n+, and so [bb] = [hh] + [hn+] +
[n+n+] = n+. QED

Definition 7.4 b is called the Borel subalgebra of g defined by the Cartan subalgebra
h and the basis S of the root system Φ.

sl(n+ 1), n ≥ 1, is a semisimple Lie algebra of type An The semisimplicity of
sl(n+1) follows from Exercise 4 in Section 3; alternatively, this follows from Theorem
7.5 below, since checking that sl(n+ 1) has trivial centre is straightforward.

Let Eij be the matrix whose only non-zero entry is 1 in the i-th row and the j-th
column. The vector space sl(n + 1) is spanned by the Eij, i 6= j, and the diagonal
matrices Eii − Ejj. Let h be the span of the Eii − Ejj; we shall see in a while that
h is a Cartan subalgebra of sl(n + 1) justifying this choice of notation. Obviously
[hh] = 0, so h is abelian. It is immediate to check that if x = diag(x1, . . . , xn+1) is
a diagonal matrix, then

ad(x)Eij = (xi − xj)Eij, (13)

so that the Eij are eigenvectors of h. This implies that h is equal to its own nor-
malizer: any element y of the normalizer of h, y 6∈ h, must contain some Eij, i 6= j,
in its decomposition with respect to our basis of sl(n+ 1), but then [yh] 6⊂ h. Thus
h ⊂ sl(n+ 1) is indeed a Cartan subalgebra.

The Borel subalgebra b ⊂ sl(n + 1) is none other than the algebra of upper
triangular matrices with trace zero, n+ (resp. n−) is the algebra of strictly upper
(resp. lower) triangular matrices.

Let αi ∈ h∗, i = 1, . . . , n, be the linear forms defined by αi(x) = xi − xi+1.
The n × n-matrix whose rows are the coefficients of the linear forms α1, . . . , αn
in the basis E11 − E22, . . . , Enn − En+1,n+1 of h, is the Cartan matrix of An. By
induction one shows that its determinant is n+ 1 6= 0. Thus α1, . . . , αn are linearly
independent, and so form a basis of h∗. The root defined by the linear form x 7→
xi − xj, i < j, equals αi + αi+1 + . . . + αj−1. This shows that every root is an
integral linear combination of the roots αi with coefficients of the same sign, thus
S = {α1, . . . , αn} is a basis of the root system Φ of sl(n + 1). To identify Φ we
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compute the Cartan matrix using the remark after the proof of Proposition 5.4: we
have nαiαi+1

= nαi+1αi = −1 and nαiαj = 0 if |i − j| > 1. Thus the root system of
sl(n+ 1) is of type An.

To compute the Killing form we use the formula

K(x, x) =
∑
α∈Φ

α(x)2 = 2
∑

1≤i<j≤n+1

(xi − xj)2 = 2n
n+1∑
i=1

x2
i − 4

∑
1≤i<j≤n+1

xixj,

where x = (x1, . . . , xn+1).

To construct more examples of semisimple Lie algebras we use the following cri-
terion.

Theorem 7.5 Let g ⊂ gl(V ) be a Lie subalgebra such that V is an irreducible
representation of g. Then g is the direct sum of Lie algebras g = Z(g) ⊕ g′, where
Z(g) is the centre, and the derived algebra g′ ⊂ g is semisimple. In particular, if
Z(g) = 0, then g is semisimple.

If g is the direct sum of a semisimple Lie algebra and an abelian Lie algebra, then
g is called a reductive Lie algebra. Such algebras can be also characterized by the
property that g′ is semisimple, or by an equivalent property that the radical of g
coincides with the centre of g, see [1], I.6.4.

We start with a lemma.

Lemma 7.6 Let g ⊂ gl(V ) be a Lie subalgebra such that V is an irreducible rep-
resentation of g. Let a ⊂ g be an ideal all of whose elements are nilpotent linear
transformations of V . Then a = 0.

Proof By Engel’s theorem there exists a basis of V such that all the elements of a
are given by strictly upper triangular matrices. This implies that aV 6= V . Note
that W = aV is g-invariant, that is, gW ⊂ W . Indeed, for any x ∈ g, a ∈ a, v ∈ V
we have xav = [xa]v + axv ∈ W since [xa] ∈ a. By the irreducibility of V we must
have aV = 0 which implies that a = 0. QED

Proof of Theorem 7.5. Let r ⊂ g be the radical. Since r is solvable, V has a basis in
which the elements of r are given by upper triangular matrices. Thus the elements of
r′ = [rr] are given by strictly upper triangular matrices. The Jacobi identity implies
that r′ ⊂ g is an ideal. By Lemma 7.6 we have r′ = 0.

Lemma 7.7 We have r ∩ g′ = 0.

Proof Consider the ideal [rg] ⊂ g. If x ∈ g, a ∈ r, and s is any linear transformation
of V which commutes with all transformations defined by the elements of r, then

Tr [xa]s = Tr (xas− axs) = Tr (xas− xsa) = Trx(as− sa) = 0.
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Since r is abelian, we can take s to be any power of [xa] ∈ r. Then the trace of
any power of [xa] is zero, and this implies that [xa] is a nilpotent linear transforma-
tion. (The coefficients of the characteristic polynomial are up to sign the symmetric
functions in the eigenvalues, and these can be expressed in terms of sums of powers.
Thus if TrAn = 0 for all n > 0, then the characteristic polynomial of A is tm,
m = dimV .) In particular, every element of the ideal [rg] ⊂ g is nilpotent. By
Lemma 7.6 we conclude that [rg] = 0.

Now, for any x, y ∈ g we have

Tr [xy]s = Tr (xys− yxs) = Tr (xys− xsy) = Trx(ys− sy) = 0,

if s is a power of an element of r, because [rg] = 0. Then Tr bs = 0 for any b ∈ g′. In
particular, Tr an = 0 for any a ∈ r ∩ g′ and any n > 0. As above, this implies that
every element of the ideal r ∩ g′ is nilpotent, hence r ∩ g′ = 0 by Lemma 7.6. QED

End of proof of Theorem 7.5. From [rg] ⊂ r ∩ g′ = 0 we conclude that r ⊂ Z(g).
Since the centre is a solvable ideal, we have Z(g) ⊂ r, so that r = Z(g). Thus the
subalgebra r + g′ ⊂ g is the direct sum of Lie algebras r⊕ g′.

Let a = (g′)⊥ be the orthogonal complement to g′ with respect to the Killing
form. This is an ideal of g, and the restriction of the Killing form of g to a is the
Killing form of a. We have K(a, a′) = 0 since a′ ⊂ g′, thus a is solvable by Cartan’s
first criterion. Hence a ⊂ r. Thus

dim r ≥ dim (g′)⊥ ≥ dim g− dim g′,

so that g = r ⊕ g′ is a direct sum of Lie algebras. Finally, g′ is isomorphic to g/r
and so is semisimple. QED

We shall apply Theorem 7.5 in conjunction with the following

Proposition 7.8 Let g ⊂ gl(V ) be the subalgebra consisting of skew-symmetric lin-
ear transformations with respect to a non-degenerate symmetric or skew-symmetric
bilinear form, that is, satisfying (14) below. If dimV > 2, then V is an irreducible
representation of g.

Proof A calculation similar to (1) shows that g is indeed a Lie algebra. For any
u, v ∈ V the linear transformation Ax = (x, u)v − (v, x)u satisfies (14), and so is in
g.

Now let W ⊂ V be a non-zero g-invariant subspace, W 6= V . Let n = dimV .
Take z ∈ W , z 6= 0, and let u 6= 0 be any vector in the orthogonal complement
z⊥, that is, such that (z, u) = 0. Finally, choose v ∈ V such that (z, v) 6= 0. Then
Az = −(v, z)u 6= 0 is an element of W . Thus z⊥ ⊂ W , hence dimW = n − 1 and
W = z⊥ for any non-zero vector z ∈ W . This means that the restriction of the
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non-degenerate form (, ) to W is identically zero. By linear algebra 2dimW ≤ n,
thus 2(n− 1) ≤ n implying n ≤ 2. QED

Note that the natural 2-dimensional complex representation of o(2) is a direct
sum of two 1-dimensional representations.

o(2l + 1), l ≥ 2, is a semisimple Lie algebra of type Bl Consider a complex
vector space V of dimension 2l + 1 with a non-degenerate symmetric bilinear form,
and define o(2l + 1) as the set of linear transformations A such that

(Ax, y) = −(x,Ay). (14)

If the form is the ‘standard’ diagonal form, then these are precisely the skew-
symmetric matrices, see Example 5 in Section 1. However, to explicitly exhibit
a Cartan subalgebra it is more practical to choose the scalar product with the
(2l + 1)× (2l + 1) Gram matrix  1 0 0

0 0 Il
0 Il 0

 ,

where Il is the identity matrix of size l × l. Our ground field is C, so that all non-
degenerate symmetric forms are equivalent, that is, can be obtained from each other
by an automorphism of the vector space V . Let us write the (2l+1)×(2l+1)-matrix
A as follows

A =

 a v1 v2

u1 X Y
u2 Z W

 ,

where a ∈ C, X, Y, Z,W are matrices of size l × l, and v1, v2 (resp. u1, u2) are row
(resp. column) vectors with l coordinates. Then (14) says that

A =

 0 v1 v2

−vT2 X Y
−vT1 Z −XT

 ,

where Y T = −Y and ZT = −Z. This suggest the following choice of a basis of V :

Hi = Ei+1,i+1 − Ei+l+1,i+l+1,
Xei−ej = Ej+1,i+1 − Ei+l+1,j+l+1, i 6= j,

Xei+ej = Ei+l+1,j+1 − Ej+l+1,i+1, X−ei−ej = Ej+1,i+l+1 − Ei+1,j+l+1, i < j,
Xei = E1,i+1 − Ei+l+1,1, X−ei = Ei+1,1 − E1,i+l+1,

where i and j range from 1 to l. Let h be the linear span of Hi, i = 1, . . . , l. We
have [hh] = 0. The convention is that e1, . . . , el is the basis of h∗ dual to the basis
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H1, . . . , Hl of h. Thus the basis vectors of o(2l+1), other than the Hi, are numbered
by certain linear forms α : h→ C. The subscripts here have been so chosen that

[hXα] = α(h)Xα for any h ∈ h. (15)

We representation of o(2l+1) on V is irreducible, by Proposition 7.8. Hence Theorem
7.5 will imply that o(2l+ 1) is semisimple, once we prove that the centre of o(2l+ 1)
is trivial.

Lemma 7.9 The centre of o(2l + 1) is 0.

Proof Let z = ξ +
∑
tαXα be an element of the centre, ξ ∈ h. We have [zh] =∑

tαα(h)Xα = 0 for any h ∈ h, which implies that tαα(h) = 0 since the vectors Xα

are linearly independent. This holds identically on h, thus tα = 0. Now [ξ,Xα] =
α(ξ)Xα = 0 for all α. Since the linear forms α : h → C span h∗ we conclude that
ξ = 0. QED

An argument similar to that we used for sl(n + 1) shows that h ⊂ o(2l + 1) is a
Cartan subalgebra. Finally, the roots α1 = e1− e2, ..., αl−1 = el−1− el, αl = el form
a basis of the root system of o(2l + 1). The corresponding Dynkin diagram is Bl.

o(2l), l ≥ 4, is a semisimple Lie algebra of type Dl This case is similar to the
previous one, so we only explain the key steps in this analysis. Consider a complex
vector space V of dimension 2l with a non-degenerate symmetric bilinear form, and
define o(2l) as the set of linear transformations A satisfying (14). We choose the
scalar product with the 2l × 2l Gram matrix(

0 Il
Il 0

)
.

Let us write the 2l × 2l-matrix A as

A =

(
X Y
Z W

)
,

where X, Y, Z,W are matrices of size l × l. Then (14) says that

A =

(
X Y
Z −XT

)
,

where Y T = −Y and ZT = −Z. This suggest the following choice of a basis of V :

Hi = Ei,i − Ei+l,i+l,
Xei−ej = Ej,i − Ei+l,j+l, i 6= j,

Xei+ej = Ei+l,j − Ej+l,i, X−ei−ej = Ej,i+l − Ei,j+l, i < j.
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Let h be the linear span of Hi, i = 1, . . . , l. Then we obtain (15) and the analogue
of Lemma 7.9, and conclude that o(2l) is semisimple, and h is a Cartan subalgebra
in o(2l). The roots α1 = e1 − e2, ..., αl−1 = el−1 − el, αl = el−1 + el form a basis of
the root system of o(2l). The corresponding Dynkin diagram is Dl.

sp(2l), l ≥ 3, is a semisimple Lie algebra of type Cl Now we equip a complex
vector space V of dimension 2l with a non-degenerate skew-symmetric bilinear form,
and define sp(2l) as the set of linear transformations A satisfying (14). We choose
the form given by the matrix (

0 Il
−Il 0

)
.

Then (14) says that

A =

(
X Y
Z −XT

)
,

where Y T = Y and ZT = Z, so a natural basis is

Hi = Ei,i − Ei+l,i+l,
Xei−ej = Ej,i − Ei+l,j+l, i 6= j,

Xei+ej = Ei+l,j − Ej+l,i, X−ei−ej = Ej,i+l − Ei,j+l, i < j,
X2ei = Ei+l,i, X−2ei = Ei,i+l.

The same statements as in the previous cases hold, and the roots α1 = e1 − e2, ...,
αl−1 = el−1−el, αl = 2el form a basis of the root system of sp(2l). The corresponding
Dynkin diagram is Cl.

We constructed semisimple Lie algebras of types An, n ≥ 1, Bn, n ≥ 2, Cn, n ≥ 3,
Dn, n ≥ 4. This is the full list of classical root systems. Explicit constructions of the
exceptional semisimple Lie algebras are much more involved, see [4] and references
therein for details.

Exercise Determine the positive roots and hence describe b, n+ and n− for o(2l+1),
sp(2l), and o(2l).
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