UNIVERSITY OF LONDON IMPERIAL COLLEGE LONDON

Course:M4P46 MSP66 (SOLUTIONS)Setter:SkorobogatovChecker:NikolovEditor:IvanovExternal:CremonaDate:May 10, 2017

BSc and MSci EXAMINATIONS (MATHEMATICS) MAY–JUNE 2009

This paper is also taken for the relevant examination for the Associateship.

M4P46 MSP66 (SOLUTIONS) Lie algebras

DATE: examdate TIME: examtime

Credit will be given for all questions attempted but extra credit will be given for complete or nearly complete answers.

Calculators may not be used.

 $\textcircled{C} 2009 \text{ University of London} \qquad M4P46 \text{ MSP66 (SOLUTIONS)} \qquad Page 1 \text{ of } 4$

1. i 4 marks, seen

Define the derived series of \mathfrak{g} inductively: $\mathfrak{g}^{(1)} = [\mathfrak{g}, \mathfrak{g}], \ \mathfrak{g}^{(n+1)} = [\mathfrak{g}^{(n)}, \mathfrak{g}^{(n)}].$ The Lie algebra \mathfrak{g} is solvable if $\mathfrak{g}^{(n)} = 0$ for some n.

ii) 8 marks, seen similar

Let $\mathfrak{t} \subset \mathfrak{sl}(2)$ be the subalgebra of upper-triangular matrices, and let $\mathfrak{n} \subset \mathfrak{sl}(2)$ be the subalgebra of strictly upper-triangular matrices. Then $[\mathfrak{t},\mathfrak{t}] = \mathfrak{n}$ and $[\mathfrak{n},\mathfrak{n}] = 0$, so that \mathfrak{t} is solvable. But $[\mathfrak{t},\mathfrak{n}] = \mathfrak{n}$, thus the lower central series of \mathfrak{g} stabilizes at \mathfrak{n} and never comes to 0. Hence \mathfrak{t} is not nilpotent.

iii) 8 marks, seen similar

Let E_{ij} be the elementary matrix, i.e. the matrix with the (i, j)-entry 1, and all the other entries 0. Then $[E_{ik}, E_{kj}] = E_{ij}$ if $i \neq j$, and $[E_{ij}, E_{ji}] = E_{ii} - E_{jj}$, hence $[\mathfrak{gl}(n), \mathfrak{gl}(n)] = \mathfrak{sl}(n)$ and $[\mathfrak{sl}(n), \mathfrak{sl}(n)] = \mathfrak{sl}(n)$. Thus the derived series of $\mathfrak{gl}(n)$ stabilizes at $\mathfrak{sl}(n)$ and never comes to 0 unless n = 1. Hence $\mathfrak{gl}(n)$ is not solvable for n > 1.

2. *i*) **5** marks, seen

For every Lie subalgebra $\mathfrak{g} \subset \mathfrak{gl}(V)$ whose elements are nilpotent linear transformations, there exists a basis of V such that every element of \mathfrak{g} is given by a strictly upper-triangular matrix. In particular, \mathfrak{g} is nilpotent.

ii) 10 marks, seen similar

 \mathfrak{g} has a basis of elementary matrices $A = E_{11}$, $B = E_{12}$, $C = E_{13}$. Then [A, B] = B, [A, C] = C, [B, C] = 0, in particular, \mathfrak{g} is a Lie subalgebra. In this basis, the adjoint representation is given by

$$ad(A) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}, \ ad(B) = \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}, \ ad(C) = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}.$$

Hence the matrix of the Killing form is

$$\left(\begin{array}{rrrr} 2 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{array}\right).$$

© 2009 University of London M4P46 MSP66 (SOLUTIONS) Page 2 of 4

iii) 5 marks, seen similar

The relations among A, B and C show that $\mathfrak{g}' = [\mathfrak{g}, \mathfrak{g}]$ is spanned by B and C, and $[\mathfrak{g}', \mathfrak{g}'] = 0$. Thus \mathfrak{g}' is solvable, and so $K(\mathfrak{g}, \mathfrak{g}') = 0$ by Cartan's first criterion. Therefore, all the entries of the matrix of the Killing form of \mathfrak{g} with the exception of the (1, 1)-entry, are equal to 0.

3.i)**4**marks, seen

Let $R \subset V$ be a root system in a real vector space V. A subset $S \subset R$ is a basis of R if S is a basis of V, and any element of R is an integral linear combination of elements of S with coefficients of the same sign.

ii) 8 marks, seen

Let $\phi: V \to \mathbb{R}$ be a linear function taking non-zero values on the roots. Let R_+ be the set of $v \in R$ such that $\phi(v) > 0$. Let $S \subset R_+$ consist of the roots that cannot be written as $v_1 + v_2$, where $v_1, v_2 \in R_+$. Then it is clear that any element of R is an integral linear combination of elements of S with coefficients of the same sign. In particular, S spans V. If $\alpha, \beta \in S$, then the angle between α and β is right or obtuse. (Otherwise $\alpha - \beta \in R$, and this contradicts the way S has been constructed.) Any system of vectors with such a property is linearly independent.

iii) 8 marks, seen similar

 $G_2 \subset \mathbb{C} = \mathbb{R}^2$ consists of the 6th roots of 1 in the complex plane, together with all non-zero sums of two of these vectors. Thus $|G_2| = 12$. The vectors $e_1 = 1$ and $e_2 = (-3 + \sqrt{-3})/2$ form a basis (easy check). The dimension of the semisimple Lie algebra of type G_2 is $rk(G_2) + |G_2| = 14$. The Weyl group is the dihedral group of 12 elements (all symmetries in it come from reflections in the roots).

4. i 4 marks, seen

 A_3 , with basis $e_1 - e_2$, $e_2 - e_3$, $e_3 - e_4$; B_3 , with basis $e_1 - e_2$, $e_2 - e_3$, e_3 ; C_3 , with basis $e_1 - e_2$, $e_2 - e_3$, $2e_3$ (note that $D_3 \simeq A_3$).

ii) 4 marks, seen

If $\alpha_1, \ldots, \alpha_n$ is a basis of a root system R, then the Cartan matrix of R is the $n \times n$ -matrix whose (i, j)-entry is $n_{\alpha\beta} = 2(\alpha, \beta)/(\beta, \beta)$.

iii) 4 marks, seen

By (ii) the Cartan matrices of A_3 , B_3 , C_3 , respectively, are

$$\begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -2 \\ 0 & -1 & 2 \end{pmatrix}, \quad \begin{pmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -2 & 2 \end{pmatrix}.$$

iv) 4 marks, seen

This is the set 2v/(v, v), where $v \in R$.

v) 4 marks, seen

 A_3 is self-dual, and B_3 and C_3 are dual to each other.