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iii)

4 marks, seen

Define the derived series of g inductively: g = [g, g, g™V = [g™), g™)].

The Lie algebra g is solvable if g = 0 for some n.

8 marks, seen similar

Let t C sl(2) be the subalgebra of upper-triangular matrices, and let
n C sl(2) be the subalgebra of strictly upper-triangular matrices. Then
[t,t) = n and [n,n] = 0, so that t is solvable. But [t,n] = n, thus the lower
central series of g stabilizes at n and never comes to 0. Hence t is not

nilpotent.

8 marks, seen similar

Let E;; be the elementary matrix, i.e. the matrix with the (i, j)-entry
1, and all the other entries 0. Then [Ey, Eyj] = Eij; if i # j, and
|Eij, Eji] = Ei; — Ej;, hence [gl(n), gl(n)] = sl(n) and [sl(n),sl(n)] = sl(n).
Thus the derived series of gl(n) stabilizes at sl(n) and never comes to 0

unless n = 1. Hence gl(n) is not solvable for n > 1.

5 marks, seen

For every Lie subalgebra g C gl(V) whose elements are nilpotent linear
transformations, there exists a basis of V' such that every element of g is

given by a strictly upper-triangular matrix. In particular, g is nilpotent.

10 marks, seen similar

g has a basis of elementary matrices A = Ey1, B = E15, C' = Ej3. Then
[A,B] = B, [A,C] = C, [B,C] =0, in particular, g is a Lie subalgebra. In

this basis, the adjoint representation is given by

000 00 000
ad(A)= 010 |,adB)=| -1 0 0 |,ad@ =] 00 0
00 1 0 0 -10 0

Hence the matrix of the Killing form is

o O N
o O O
o O O
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iii)

iii)

iii)

5 marks, seen similar

The relations among A, B and C show that g’ = [g, g is spanned by B and
C, and [¢/,g'] = 0. Thus ¢ is solvable, and so K(g,¢’) = 0 by Cartan’s
first criterion. Therefore, all the entries of the matrix of the Killing form

of g with the exception of the (1, 1)-entry, are equal to 0.

4 marks, seen

Let R C V be a root system in a real vector space V. A subset S C R is
a basis of R if S is a basis of V', and any element of R is an integral linear

combination of elements of S with coefficients of the same sign.

8 marks, seen

Let ¢ : V' — R be a linear function taking non-zero values on the roots. Let
R, be the set of v € R such that ¢(v) > 0. Let S C R, consist of the roots
that cannot be written as vy 4+ vo, where vy, v € R,. Then it is clear that
any element of R is an integral linear combination of elements of S with
coefficients of the same sign. In particular, S spans V. If a, 8 € S, then
the angle between o and [ is right or obtuse. (Otherwise o — 8 € R, and
this contradicts the way S has been constructed.) Any system of vectors

with such a property is linearly independent.

8 marks, seen similar

G5 C C = R? consists of the 6th roots of 1 in the complex plane, together
with all non-zero sums of two of these vectors. Thus |Go| = 12. The
vectors e; = 1 and ey = (=3 + v/—3)/2 form a basis (easy check). The
dimension of the semisimple Lie algebra of type Gs is rk(Gs) + |G| = 14.
The Weyl group is the dihedral group of 12 elements (all symmetries in it

come from reflections in the roots).

4 marks, seen

As, with basis e; — ey, €5 — €3, e3 — e4; Bz, with basis e; — e, €5 — €3, €3;
(3, with basis e; — eg, €5 — e3, 2e3 (note that D3 ~ Ajg).

4 marks, seen

If aq,...,q, is a basis of a root system R, then the Cartan matrix of R is

the n x n-matrix whose (i, j)-entry is nns = 2(«, 8)/(5, B).

4 marks, seen



By (ii) the Cartan matrices of Ag, Bs, C3, respectively, are

2 -1 0 2 -1 0 2 -1 0
-1 2 -1 1, -1 2 =21, -1 2 -1
0 -1 2 0 -1 2 0 -2 2

iv) 4 marks, seen

This is the set 2v/(v,v), where v € R.

v) 4 marks, seen

Ajs is self-dual, and Bs and C3 are dual to each other.
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