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Abstract. We give sufficient conditions for the composition of two torsors to be a
torsor under the group which is an extension of the corresponding structure groups.
This construction is applied to produce natural non-abelian torsors on the Enriques
surfaces. We exhibit an Enriques surface over Q with a dense set of Q-points,
which is a counter-example to weak approximation accounted for by the descent
obstruction defined by such a non-abelian torsor, but not by the Brauer–Manin
obstruction.

Introduction

The Brauer–Manin obstruction to the Hasse principle and weak approximation pro-
vides a fruitful general approach to rational points on varieties over number fields.
A fundamental problem here can be stated as follows: is it possible to describe
in purely geometric terms the class of smooth projective varieties for which the
Brauer–Manin obstruction is the only obstruction to the Hasse principle and weak
approximation? In recent examples where the Brauer–Manin obstruction is not the
only one ([12], [5], [1]) the key rôle is played by étale Galois coverings with a non-
abelian Galois group. This has left open the question as to whether similar examples
exist for varieties with an abelian geometric fundamental group. The case of princi-
pal homogeneous spaces of abelian varieties and that of rational surfaces (which are
geometrically simply connected), where the Brauer–Manin obstruction is expected
to be the only one, might seem to suggest that as long as the geometric fundamental
group is abelian the Brauer–Manin obstruction should still be the only one.

The Manin obstruction was linked to the classical abelian descent by Colliot-
Thélène and Sansuc [2]. In [6] the authors introduced the non-abelian descent as a
new tool for studying rational points. The present paper enriches the non-abelian
theory with a general method for constructing non-abelian torsors, and then applies
it to an example which answers the above question in the negative.

The Enriques surfaces seem to lie close to the frontier separating the varieties
whose arithmetic is controlled by the Brauer–Manin obstruction from those for which
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it is not the case. These surfaces are cohomologically indistinguishable from rational
surfaces, but yet they possess a non-trivial geometric fundamental group Z/2. We
construct an Enriques surface over the field of rational numbers which is a counter-
example to weak approximation that cannot be explained by the Brauer–Manin
obstruction. More precisely, if a, b and c are integers satisfying some fairly mild
conditions, then the quotient of the Kummer surface Y given by

y2 = (x2 − a)(x2 − ab2)(t2 − a)(t2 − ac2)

by the involution which changes the signs of all the coordinates is an Enriques
surface X with an adelic point which cannot be approximated by a rational point.
However, this adelic point satisfies all the global reciprocity conditions provided by
the elements of the Brauer group BrX. (Note that in our example the Galois group
acts trivially on PicX.) For a numerical example we can choose a = 5, b = 13,
c = 2. As an additional feature this particular Enriques surface has a Zariski dense
set of rational points.

One way to look at this example is suggested by the philosophy of [12]: the natural
map BrX → BrY is not surjective; hence Br Y can impose more conditions on the
adelic points in the closure of the set of rational points than BrX. However, a more
general interpretation is provided by non-abelian descent.

We show that a torsor over a K3 covering of an Enriques surface, which is stable
under the action of the Enriques involution (for example, a universal torsor), can
be considered as a non-abelian torsor over the Enriques surface. This is a particular
case of a general situation when a composition of torsors is a torsor under the
group which is an extension of relevant structure groups. This result reminiscent of
Mumford’s construction of theta-groups [8] is another main goal of this paper (see
Theorem 1.2 and Proposition 1.4). It yields a large supply of non-abelian torsors;
the non-abelian descent method can then be deployed with potential applications
to weak approximation and the Hasse principle. The counter-example to weak
approximation on the Enriques surface which we construct in this paper can be
explained by the descent obstruction associated to this non-abelian torsor, as defined
in [6]. Another application is a link between the approaches of [12] and [6]: we show
that the ‘iterated Manin obstruction’ of [12] is in fact equivalent to the descent
obstruction given by the composition of an abelian (e.g. universal) torsor with the
corresponding étale Galois covering (see Proposition 1.6).

1. Composition of torsors

1.1. Preliminaries

Let k be a field of characteristic 0. Let k̄ be an algebraic closure of k, Γ = Gal(k̄/k).
By a k-variety we understand in this paper a separated k-scheme of finite type. We
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write X = X ×k k̄, and denote by k̄[X]∗ the group of invertible regular functions
on X. A commutative algebraic k-group F of multiplicative type is an extension
of a finite k-group by a k-torus. The module of characters F̂ of F is an abelian
group of finite type acted on by Γ. If an algebraic k-group G acts on a k-variety Y
preserving the fibres of a morphism Y → X, then Y is a X-torsor under G if locally
in the étale topology on X the variety Y with the action of G is isomorphic to the
direct product X ×k G. All cohomology groups in this paper are Galois or étale
cohomology groups; we also consider the Galois cohomology set H1(k,G), where G
is a not necessarily abelian algebraic k-group.

If Y is a geometrically integral variety such that k̄[Y ]∗ = k̄∗, and F is a k-group
of multiplicative type, then there is the following exact sequence of Colliot-Thélène
and Sansuc (see, e.g., [13], (2.22)):

0→ H1(k, F )→ H1(Y, F )
χ
−→ HomΓ(F̂ ,PicY )

∂
−→ H2(k, F )→ H2(Y, F ). (1)

If Z → Y is a torsor under F , then χ([Z]) ∈ HomΓ(F̂ ,PicY ) is called the type of
Z → Y . When k is algebraically closed, then (1) shows that a torsor is determined
by its type up to isomorphism. The variety Z is geometrically connected if and only
if the kernel of χ([Z]) has no torsion, for example when the type is injective. A Y -
torsor under a group of multiplicative type is universal if its type is an isomorphism.

There is another useful exact sequence, also due to Colliot-Thélène and Sansuc
([2], (2.1.1)). Let T be a k-torus, and Z → Y a torsor under T , where both Y and
Z are geometrically integral, and k̄[Y ]∗ = k̄∗. The following sequence of Γ-modules
is then exact:

1→ k̄∗ → k̄[Z]∗ → T̂ → PicY → PicZ → 0. (2)

Moreover, up to sign the map T̂ → PicY coincides with the type of Z → Y . It is
clear from (2) that when the type is injective we have k̄[Z]∗ = k̄∗.

In the case when Z → Y is a torsor under a finite k-group F , and the condition
k̄[Z]∗ = k̄∗ is satisfied, we still have an exact sequence ([13], (2.5))

0→ F̂ → PicY → PicZ. (3)

Here again, F̂ → PicY is the type of the torsor Z → Y ([13], p. 25).

We write BrX for the cohomological Brauer–Grothendieck group H2(X,Gm).
Let Br 0X = Im [Br k → BrX], Br 1X = Ker [BrX → BrX]. The Hochschild–Serre
spectral sequence (cf. [13], Cor. 2.3.9) defines a map Br 1X → H1(k,PicX); if
k̄[X]∗ = k̄∗, then the kernel of this map is Br 0X. If λ : M → PicX is a homo-
morphism of Γ-modules, then Br λX ⊂ Br 1X is the inverse image of λ∗H1(k,M) ⊂
H1(k,PicX).

For a number field k we write Ωk for the set of all places of k. Let Ak be the ring
of adèles of k. For a subgroup B ⊂ BrX define

X(Ak)
B =

{
{Pv} ∈ X(Ak)

∣
∣
∑

v∈Ωk

invv(α(Pv)) = 0, ∀α ∈ B
}
,
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where X(Ak) is the set of adelic points of X, and invv : Br kv → Q/Z is the
local invariant of the local class field theory. By global reciprocity we have X(k) ⊂
X(Ak)Br . WhenX is proper X(Ak)Br contains the closureX(k) ofX(k) inX(Ak) =∏
v∈Ωk

X(kv) in the product topology.

Finally, for a torsor f : Z → X under a k-group G we write

X(Ak)
f =

{
{Pv} ∈ X(Ak)

∣
∣ {[ZPv ]} ∈ Im[H

1(k,G)→
∏

v∈Ωk

H1(kv, G)]
}
.

We have X(k) ⊂ X(Ak)f ; moreover, X(k) ⊂ X(Ak)f when X is proper and G is
linear (see [13], Prop. 5.3.3).

1.2. A general result

We shall need the following auxiliary statement.

Lemma 1.1 Let Y → X be a torsor under an algebraic k-group G. Assume that
the image of any k̄-morphism Y → G is a k̄-point. Then G(k̄) = Aut (Y /X).

Proof. Let ψ ∈ Aut (Y /X). The canonical isomorphism Y ×X Y = Y ×k̄G identifies
the graph of ψ with the graph of a morphism g : Y → G. Now by assumption we
have g(y) = g0 for some g0 ∈ G(k̄) and any y ∈ Y (k̄). Hence ψ(y) = g0y. QED

Colliot-Thélène pointed out to us that the converse is false, e.g. for X = Spec k,
Y = Spec (k ⊕ k) with the action of G = Z/2 by permutations.

The main result of this section is the following

Theorem 1.2 Let F and H be algebraic k-groups, p : Z → Y a torsor under F ,
and Y → X a torsor under H, where X is a smooth and geometrically integral
k-variety. Assume the following conditions:

1. For each h ∈ H(k̄) there exists an isomorphism of k̄-varieties ϕh : Z → Z such
that the following diagram is commutative:

Z
ϕh−−−→ Z

p



y



yp

Y
h

−−−→ Y

2. The image of any k̄-morphism Z → F is a k̄-point.

Then there is an exact sequence of algebraic k-groups

1→ F → G→ H → 1 (4)

such that the action of F on Z extends to an action of G which induces the action
of H on the quotient Y = Z/F . This action makes Z into an X-torsor under G.
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Therefore, the theorem gives a natural sufficient condition for a composition of
two torsors to be a torsor. In the proof G is constructed in a certain canonical
way, namely, G(k̄) is the group of k̄-automorphisms of Z which are liftings of the
automorphisms of Y defined by the elements of H(k̄).

Proof of the theorem. Define G as the subset of Aut k̄(Z) consisting of the automor-
phisms φ such that there exists h ∈ H(k̄) making the diagram

Z
φ

−−−→ Z

p



y



yp

Y
h

−−−→ Y

commutative. To any φ ∈ G there corresponds exactly one h ∈ H(k̄) because the
action of H on Y is faithful. Since (h, y) 7→ hy is an action of H on Y , we see that
G is a subgroup of Aut k̄(Z). For the same reason the natural map π : G → H(k̄) is
a homomorphism. Obviously F (k̄) is a subgroup of G contained in the kernel of π.
By Lemma 1.1 condition 2 of the theorem implies that Aut (Z/Y ) = F (k̄), hence
we obtain an exact sequence of groups

1→ F (k̄)→ G
π
−→ H(k̄).

The k̄-varieties Z and X come from varieties defined over k, therefore there is a
natural action of Γ on the group Aut (Z/X); this action is defined by the formula
(cf. [10], III.1.1):

(γϕ)(z) = γ(ϕ(γ
−1
z)), γ ∈ Γ, z ∈ Z(k̄), ϕ ∈ Aut (Z/X). (5)

One checks immediately that the commutativity of the diagram above implies the
commutativity of the same diagram with φ and h replaced by γφ and γh, respectively.
This shows that the subgroup G ⊂ Aut k̄(Z) is stable under the action of the Galois
group Γ.

Lemma 1.3 Let z0 ∈ Z(k̄). The map θ : G → p−1(H(k̄).p(z0)) defined by g 7→ gz0
is a bijection.

Proof. θ is injective. Suppose that g1z0 = g2z0. This implies in particular that g1
and g2 are mapped to the same h ∈ H(k̄), that is, g1g

−1
2 is in Aut (Z/Y ). Since

Aut (Z/Y ) = F (k̄) we have g1g
−1
2 ∈ F (k̄). But g1g

−1
2 fixes z0, thus g1 = g2.

θ is surjective. Let z1 ∈ p−1(H(k̄).p(z0)). Then there exists h ∈ H(k̄) such that
hp(z0) = p(z1). Let ϕh be a k̄-automorphism of Z such that p ◦ ϕh = h ◦ p. Then
p(ϕh(z0)) = p(z1). It remains to modify ϕh by an element of F (k̄) to obtain φ ∈ G
such that φ(z0) = z1. QED
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End of the proof of the theorem. We have an obvious commutative diagram

G
θ

−−−→ p−1(H(k̄).p(z0))

π



y



yp

H(k̄) −−−→ H(k̄).p(z0)

The map H(k̄)→ H(k̄).p(z0) is bijective because the action of H on Y is free. This
together with the bijectivity of θ shows that π : G → H(k̄) is surjective. We now
have a Galois equivariant extension of groups

1→ F (k̄)→ G → H(k̄)→ 1.

Let G be the k̄-variety p−1(H(k̄).p(z0)). The bijection θ makes G into an algebraic
k̄-group, an extension of H by F . Since the group variety G is quasi-projective and
the action of Γ on it is continuous, we can define G as the quotient of G by this
action. It is clear that G is an extension of H by F , and that G acts on Z with
required properties. QED

Remark. We see from Lemma 1.1 that when the connected component of G is a
torus, and k̄[Z]∗ = k̄∗, the group G(k̄) coincides with Aut (Z/X) equipped with a
natural action of Γ.

The following proposition gives sufficient conditions for Theorem 1.2 which are
easy to verify.

Proposition 1.4 Let p : Z → Y be a torsor under a k-group F of multiplicative
type, and Y → X be a torsor under an algebraic k-group H. Assume that X is a
smooth and geometrically integral k-variety, and that Y is such that k̄[Y ]∗ = k̄∗ (e.g.
proper and geometrically connected). Assume also that the type λ ∈ HomΓ(F̂ ,PicY )
of the torsor p : Z → Y is injective with H(k̄)-invariant image (e.g. the torsor is
universal). Then condition 1 of the theorem is satisfied. Condition 2 is satisfied as
long as F is finite, or F is a torus, or Y is proper.

Proof. The action of H on Y defines a natural Γ-equivariant action of H(k̄) on PicY
and the assumption we made about the type λ implies that this action gives rise
to a natural Γ-equivariant action τ̂ of H(k̄) on F̂ ; we have λ ◦ τ̂h = h∗ ◦ λ for each
h ∈ H(k̄). Since Y satisfies the condition k̄[Y ]∗ = k̄∗, a Y -torsor under F is uniquely
determined up to isomorphism by its type. Now the formula above shows that the
Y -torsor under F obtained from Z → Y by the base change h : Y → Y has the
same type as the Y -torsor under F obtained from Z → Y by the transformation of
structure group τh : F → F . Hence these torsors are isomorphic, by (1). Therefore,
any h ∈ H(k̄) lifts to an automorphism ϕh of the k̄-variety Z, which means that
condition 1 of the theorem is satisfied.
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Since λ is injective, the variety Z is geometrically connected. Thus for the finite
F condition 2 of the theorem is obvious.

If F is a torus, then the injectivity of the map λ implies that k̄[Z]∗ = k̄∗, whence
Mork̄(Z, F ) = F (k̄).

Finally we consider the case when Y is proper. The k-group F is an extension of
a finite commutative k-group F1 by a torus T . Let Y1 = Z/T ; this proper variety
is a Y -torsor under F1. The functoriality of (1) with respect to the change of the
structure group F → F1 implies that the type of Y1 → Y is the composition

F̂1 ↪→ F̂ ↪→ PicY ,

hence is injective. Therefore Y1 is geometrically connected, hence k̄[Y1]
∗ = k̄∗. Next,

Z is a Y1-torsor under T . The following diagram commutes:

0 −−−→ F̂1 −−−→ F̂ −−−→ T̂ −−−→ 0

|| ↓ ↓

0 −−−→ F̂1 −−−→ PicY −−−→ PicY 1

The top line here is obvious, and the bottom one is the sequence (3) defined by the
torsor Y1 → Y . The middle vertical arrow is the type of Z → Y , and right hand
one is the type of Y1 → Y . The left hand square commutes by the functoriality of
type with respect to the structure group change F → F1. To prove that the right
hand square commutes we note that the push-forward of the torsor Z → Y1 with
respect to the morphism of the structure group T → F gives the same F -torsor as
the pull-back of the F -torsor Z → Y to Y1. Indeed, the push-forward is the quotient
(Z ×k F )/T , where T acts by sending (z, f) to (t−1z, tf). Here the structure of
an F -torsor is obtained from the action of F on the second factor. The canonical
isomorphism Z ×k F = Z ×Y Z translates the action of T into (z1, z2) 7→ (t−1z1, z2).
The quotient by this action is Y1 ×Y Z, the pull-back of Z → Y to Y1. We now
see that the two different ways to build a map F̂ → PicY 1 in the diagram coincide
since both are equal to the type of the F -torsor Y1×Y Z → Y1. This establishes the
commutativity.

An easy diagram chase now shows that the map T̂ → PicY 1 is injective. By the
remarks after (2) we have k̄[Z]∗ = k̄∗. Since F is of multiplicative type, this implies
that Mork̄(Z, F ) = F (k̄). QED

1.3. Examples

Example 1. Mumford’s theta-groups. Let L be a line bundle on an abelian variety
A. The complement to the zero section of L is an A-torsor under the multiplicative
group Gm. Let K(L) ⊂ A be the closed subscheme whose closed points are the
elements a ∈ A(k̄) such that L is isomorphic to a∗L, the translation of L by a. Note
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that K(L) is finite if and only if L is ample ([8], II.6, Prop. 1). The assumptions
of Theorem 1.2 are satisfied because of Proposition 1.4. The resulting extension of
K(L) by Gm is a theta-group; these groups have numerous beautiful applications,
see [8], VI.23.

Example 2. Let A be an abelian variety with an action of a finite group scheme
H. Let us assume that the group scheme AH (the points of A fixed by H) is finite.
Let Y be a principal homogeneous space of A such that the class [Y ] ∈ H1(k,A)
comes from H1(k,AH). Then H naturally acts on Y . Let D be a projective variety
with a free action of H. The simultaneous action of H on Y ×k D is free. Let
X = (Y ×k D)/H.

Let α : A → B = A/AH be the natural isogeny. Choose a positive integer m
such that AH ⊂ A[m]. The multiplication by m map factors through α, so that
we can write m = β ◦ α, where β : B → A is an isogeny. Suppose that Z is a
principal homogeneous space of B such that [Y ] = β∗[Z]. Then there is a natural
push-forward map Z → Y (quotient by Ker (β) = A[m]/AH). This map makes Z
into a Y -torsor under the group scheme A[m]/AH .

Let At be the dual abelian variety of A. The dual map to the injection AH → A[m]

is the surjection At[m]→ ÂH . Let F be its kernel; this is the group dual to A[m]/AH .
The type of the torsor Z ×k D → Y ×k D under A[m]/AH (which acts trivially on
D) is the composed map

F → At[m]→ At(k̄) = Pic 0Y → PicY → Pic (Y ×k̄ D).

From the theorem we obtain that Z ×k D is an X-torsor under a finite k-group G
which is an extension of H by F .

The simplest case is when H = Z/2, and the non-trivial element of H acts on A
as multiplication by −1. Then AH = A[2], Y is any principal homogeneous space of
A such that 2[Y ] = 0, m is any positive even number, B = A, α is the multiplication
by 2 map. If A is an elliptic curve, and D is a curve of genus 1 on which the non-
trivial element of H acts as a translation, then X is a bielliptic surface. Its curious
arithmetic properties were studied in [3] and [12]. An important rôle in [12] was
played by a torsor Z ×k D → X with m = 8 (then G is non-abelian). The group
H = μ3 leads to bielliptic surfaces of a different type; their arithmetic was studied
in [1].

Example 3. Let X be an Enriques surface over k, and Y → X be a K3-covering
of X. Let Z be a universal Y -torsor. It is a torsor under the Néron–Severi torus T
of Y . The theorem then says that Z is an X-torsor under a k-group G which is an
extension of Z/2 by T .

The group G is commutative if and only if the natural map PicX → PicY is
surjective. (This can be checked over k̄.) Indeed, the exact sequence in the proof of
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Lemma 2.4 below shows that Z/2 acts trivially on PicY if and only if PicX → PicY
is surjective. In this case Z/2 also acts trivially on T . Since H2(Z/2, k̄∗) = 0 for the
trivial Z/2-module structure on k̄∗, the extension is a semi-direct product. Because
of the trivial action we have G = T × Z/2. Conversely, if G is commutative, then
Z/2 acts trivially on PicY , hence PicX → PicY is surjective.

1.4. Non-abelian torsor obstruction versus Manin obstruc-
tion on abelian torsors

In this subsection we clarify the relation between the (non-abelian) torsor obstruc-
tion [6] and the ‘iterated Manin obstruction’ [12]. All varieties are assumed to be
smooth and quasi-projective. For more details on twisted forms of groups and torsors
see [13], Ch. 2.

Lemma 1.5 Let G′ be a k-form of an algebraic k-group G. Let Z → X be a torsor
under G, and Z ′ → X be a torsor under G′. Suppose that the torsors Z → X and
Z
′
→ X under G = G

′
are isomorphic. Assume that every morphism from Z to G

maps Z to a point. Then there exists a continuous 1-cocycle ρ of Γ with coefficients
in G(k̄) such that G′ = Gρ is the inner form of G defined by ρ, and Z ′ = Zρ is the
twisted form of Z defined by ρ with respect to the natural action of G on Z.

Proof. The k-form G′ of G defines a ‘twisted’ action of Γ on G, denoted by γ?g as
opposed to the standard action γg, where γ ∈ Γ, g ∈ G(k̄). Choose an isomorphism
of X-torsors under G, Z ' Z

′
. Then Z ′ defines a ‘twisted’ action of Γ on Z, denoted

by γ?z as opposed to the standard action γz, where γ ∈ Γ, z ∈ Z(k̄). The points
γ?z and γz belong to the same fibre of Z → X. Hence γ?z = g(z, γ) ∙ γz, where, for
a fixed γ, g(z, γ) is a morphism from Z to G. By our assumption g(z, γ) does not
depend on z. We write g(z, γ) = g(γ). It is clear that this is a locally constant,
hence continuous function Γ→ G(k̄). (Recall that Γ has natural profinite topology,
and G(k̄) has discrete topology.) Let g ∈ G(k̄), z ∈ Z(k̄). Then

γ?(gz) = g(γ) ∙ γ(gz) = g(γ) ∙ γg ∙ γz.

On the other hand,
γ?(gz) = γ?g ∙ γ?(z) = γ?g ∙ g(γ) ∙ γz.

Since G acts freely on Z, we have

γ?g = g(γ) ∙ γg ∙ g(γ)−1. (6)

We have (γ1γ2)?z = g(γ1γ2) ∙ γ1γ2z. But this also equals

γ1?(γ2?z) = γ1?(g(γ2) ∙
γ2z) = γ1?(g(γ2)) ∙ g(γ1) ∙

γ1γ2z.
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Substituting (6) we deduce that g(γ1γ2) = g(γ1) ∙ γ1g(γ2) which says that g(γ) is a
1-cocycle of Γ with coefficients in G(k̄). Formula (6) now shows that G′ is indeed the
inner form of G defined by this cocycle. Furthermore, Z ′ is the twist of Z defined
by the same cocycle. QED

In the notation of Proposition 1.4 let σ be a continuous 1-cocycle of Γ with
coefficients in H(k̄). Various objects acted on by H can be twisted by σ. We
thus obtain the twisted k-variety Y σ and the twisted k-group of multiplicative type
F σ. The natural action τ of H on F , constructed in the beginning of the proof of
Proposition 1.4, comes from the natural Γ-equivariant action of H(k̄) on PicY . By
construction this action of H(k̄) preserves the injection of Γ-modules λ : F̂ ↪→ PicY .
Thus after twisting we obtain a natural injection of Γ-modules λσ : F̂ σ ↪→ PicY

σ
.

Let Hσ be the inner form of H defined by σ. That is, Hσ is the algebraic k-group
obtained from H by twisting it by σ with respect to the action of H on itself by
conjugations. The group Hσ acts on Y σ so that the natural morphism rσ : Y σ → X

is a torsor under Hσ. We also have a natural Γ-equivariant action of Hσ(k̄) on
PicY

σ
, and an action of Hσ on F σ.

Proposition 1.6 Let k be a number field. Let F be a k-group of multiplicative type,
and H be a finite k-group. Let r : Y → X be a torsor under H. Let p : Z → Y

be a torsor under F whose type is injective with H(k̄)-invariant image, satisfying
k̄[Z]∗ = k̄∗. Then the conditions of Proposition 1.4 are satisfied. Let f : Z → X be
the torsor under G obtained by composing torsors p : Z → Y and r : Y → X as in
Theorem 1.2. Then

X(Ak)
f =

⋃

[σ]∈H1(k,H)

rσ(Y σ(Ak)
Br λσ ). (7)

In particular, if Z → Y is a universal torsor, then

X(Ak)
f =

⋃

[σ]∈H1(k,H)

rσ(Y σ(Ak)
Br 1).

It can be shown that the injectivity of the type of Z → Y is a consequence of
other conditions.

Proof of the proposition. The conditions of Proposition 1.4 are satisfied since k̄[Z]∗ =
k̄∗ implies k̄[Y ]∗ = k̄∗. The left hand side of (7) is

X(Ak)
f =

⋃

[ξ]∈H1(k,G)

f ξ(Zξ(Ak)),

(cf. [13], Def. 5.3.1). Here f ξ : Zξ → X is the twisted torsor of f : Z → X by a
continuous 1-cocycle ξ of Γ with coefficients in G(k̄). Let σ be the image of ξ with
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respect to the surjective morphism of algebraic k-groups G→ H. There is a natural
surjective map (quotient by F σ) of Zξ → Y σ, where Y σ, defined as the twist of Y ,
is an X-torsor under Hσ. The map Zξ → Y σ makes Zξ into a Y σ-torsor under F σ

of type λσ.

Let us turn to the right hand side. By the main result of the descent theory of
Colliot-Thélène and Sansuc (see [13], Thm. 6.1.2) we have

Y σ(Ak)
Br λσ = ∪ p′(Z ′(Ak)),

where p′ : Z ′ → Y σ ranges over Y σ-torsors under F σ of type λσ. The conditions of
Proposition 1.4 are satisfied and we can compose the torsors rσ ◦p′ : Z ′ → Y σ → X.
Thus Z ′ is an X-torsor under a certain k-group G′ which is an extension of Hσ by
F σ.

We observe that p : Z → Y and p′ : Z
′
→ Y

σ
= Y have the same type as

Y -torsors under F . Therefore, these torsors are isomorphic. The group G(k̄) was
constructed in the proof of Theorem 1.2 as the group of the automorphisms of Z over
Y which are liftings of the elements of H(k̄). The structure of an algebraic variety
on G(k̄) was defined via its identification with p−1(H(k̄).y0), for some y0 ∈ Y (k̄).
We conclude that the k̄-groups G and G

′
are isomorphic. Thus G′ is a k-form of the

algebraic k-group G.

The assumption k̄[Z]∗ = k̄∗ implies that Z is geometrically connected. The con-
nected component of G is a torus, hence the same assumption shows that the image
of any morphism Z → G is a point. By Lemma 1.5 for some continuous 1-cocycle
ξ : Γ → G(k̄) we have Z ′ = Zξ, G′ = Gξ. Comparing the formula γ?z = ξ(γ) ∙ γz
from the proof of Lemma 1.5 with the analogous formula for Y σ we see that map
G→ H sends ξ to σ.

We have proved that every Y σ-torsor under F σ of type λσ is isomorphic to Zξ,
for some lifting [ξ] ∈ H1(k,G) of [σ] ∈ H1(k,H). This completes the proof of (7).
QED

2. Enriques surface of Kummer type

2.1. Constructions

Let E1, E2 be elliptic curves over k which are not isogenous over k̄, and such that
their points of order 2 are defined over k. For i = 1, 2 let Di be a principal homo-
geneous space of Ei whose class in H

1(k,E1) has order 2. The antipodal involution
P 7→ −P on Ei defines an involution on D1 and on D2. We shall denote all these
involutions by ι.

Let Y be the Kummer surface built from D1 ×D2. This is the minimal desingu-
larization of the quotient of D1 ×D2 by the simultaneous antipodal involution.
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Lemma 2.1 Let P ∈ E1[2], Q ∈ E2[2]. The involution of D1×D2 given by (x, y) 7→
(x+ P, ι(y) +Q) descends to an involution σ : Y → Y without fixed points.

Proof. Note that (x, y) 7→ (x+ P, ι(y) +Q) commutes with the involution (x, y) 7→
(ι(x), ι(y)). This rule defines an involution on the singular surface (D1 × D2)/ι,
hence also on its minimal desingularization Y . QED

Recall that the quotient of a K3 surface by any fixed point free involution is an
Enriques surface. The lemma thus allows us to define an Enriques surface X = Y/σ.
Let f : Y → X be the corresponding unramified double covering.

For our purposes we shall consider the following simplest case of the above con-
struction. Let a ∈ k∗ \ k∗2, and let b, c, d1, d2 be in k∗ such that b 6= ±1, c 6= ±1.
Let the curves D1 and D2 be given by their respective (affine) equations:

y21 = d1(x
2 − a)(x2 − ab2), y22 = d2(t

2 − a)(t2 − ac2).

The antipodal involution changes the signs of y1 (resp. of y2). Hence the Kummer
surface Y is the minimal, smooth and projective model of the affine surface

y2 = d(x2 − a)(x2 − ab2)(t2 − a)(t2 − ac2), (8)

where y = y1y2, d = d1d2.

When k is a number field it is not hard to give a sufficient condition that guarantees
that E1 and E2 are not isogenous over k̄.

Lemma 2.2 Let k be a number field with the ring of integers Ok. For any prime
℘ ∈ Spec (Ok) let v℘ : k∗ → Z be the associated valuation. Assume that there exists
a prime ℘ ∈ Spec (Ok) not dividing 2 such that

v℘(b) > 0, v℘(c) = v℘(c− 1) = v℘(c+ 1) = 0.

Then E1 and E2 are not isogenous over k̄.

Proof. The change of variables u = a−1y1x, t = a
−1x2 gives a degree 2 morphism

D1 → E ′1, where E
′
1 is the elliptic curve with equation u

2 = ad1t(t − 1)(t − b2).
This implies that E1 and E

′
1 are isogenous. The curve E

′
1 is a quadratic twist of the

elliptic curve
E ′′1 : u

2 = t(t− 1)(t− b2).

In particular, E1 and E
′′
1 are isogenous. The same argument shows that E2 is k̄-

isogenous to the elliptic curve E ′′2 given by u
2 = t(t− 1)(t− c2). The j-invariant of

E ′′1 equals

j1 = 2
8 (b
4 − b2 + 1)3

b4(b2 − 1)2
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(see, e.g. [5], p. 317), and the j-invariant j2 of E
′′
2 is given by a similar formula.

Our assumptions imply that v℘(j2) ≥ 0 and v℘(j1) < 0. In particular, j1 is not
integral over the ring Z[j2]. By Theorem 2.6.3 of [11] the curves E

′′
1 and E

′′
2 are not

isogenous over k̄. Hence the same is true for E1 and E2. QED

Example. If the ranks of E1 and E2 are positive, then k-points are Zariski dense
on E1 × E2. Take D1 = E1, D2 = E2. Then k-points are dense on Y and hence on
X. This is a simple way to construct Enriques surfaces over a number field k with
a Zariski dense set of k-points (cf. [14]). For example, let k = Q and a = 5, b = 13,
c = 2, d1 = d2 = 1. Then as in the previous proof E1 ' D1 is isogenous to the curve
y2 = x(x−5)(x−845) which has a point (4, 58) of infinite order. Similarly, E2 ' D2
is isogenous to the curve y2 = x(x− 5)(x− 20) with a point (4, 8) of infinite order.
Applying Lemma 2.2 with ℘ = 13 we see that E1 and E2 are not isogenous over Q.

To get an explicit expression of the Enriques involution σ let P (resp. Q) be the
point of order 2 in E1 (resp. E2) given by the difference of two points (

√
a, 0) −

(−
√
a, 0) on D1 (resp. D2). Then σ as defined in Lemma 2.1 is

σ(x, t, y) = (−x,−t,−y). (9)

Indeed, the translation tP : D1 → D1 by P commutes with the antipodal involution,
hence it descends to the quotient by the antipodal involution, that is, to P1k with
coordinate x. Thus the x-coordinate of tP (x, y1) is φ(x), where φ ∈ PGL(2, k).
We note that φ swaps

√
a and −

√
a, and also b

√
a and −b

√
a. Since the elements

of PGL(2, k) are uniquely determined by the action on any four pairwise distinct
points of P1k, we conclude that φ(x) = −x. Therefore, tP (x, y1) is either (−x, y1)
or (−x,−y1). Since tP has no fixed points we must have tP (x, y1) = (−x,−y1).
Similarly, tQ ◦ ι(t, y2) = (−t, y2). This implies (9). One can also directly check that
(9) defines a fixed point free involution on Y .

We enumerate the points of D1 with coordinates (
√
a, 0), (−

√
a, 0), (b

√
a, 0),

(−b
√
a, 0) by i = 0, 1, 2, 3. Similarly, the points of D2 with coordinates (

√
a, 0),

(−
√
a, 0), (c

√
a, 0), (−c

√
a, 0) are numbered by j = 0, 1, 2, 3. Let lij be the smooth,

proper, rational curve on Y that is the blowing-up of the image of (i, j) on (D1 ×
D2)/ι. Let li (resp. sj) be the proper transform of the rational curve (i × D2)/ι
(resp. (D1 × j)/ι) on Y . The non-zero intersection indices of these 24 projective
lines on Y can be listed as follows:

(li.lij) = 1, (lij.sj) = 1.

Consider the morphisms πi : Y → Di/ι = P
1
k, i = 1, 2. Explicitly, π1 (resp. π2)

is given by the projection to the coordinate x (resp. t). The smooth fibres of π1
(resp. of π2) are curves of genus 1, and the singular fibres correspond to the points
with y1 = 0 (resp. y2 = 0). Let f1 (resp. f2) be the (smooth) fibre of π1 (resp. of
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π2) at x = ∞ (resp. t = ∞). The structure of singular fibres is such that for any
i, j ∈ {1, 2, 3, 4} we have the following relations in PicY :

[f1] = 2[li] +
∑

k

[lik], [f2] = 2[sj] +
∑

k

[lkj].

We note an important relation which is straightforward to verify:

div (y) =
∑

li +
∑

sj +
∑

lij − 2f1 − 2f2. (10)

Let U ⊂ D1×D2 be the complement to the 16 points with y1 = y2 = 0. Then V =
U/ι is the complement to the 16 lines lij in Y . We have an unramified double covering
U → V . We shall also need smaller open sets U ′ = (D1\{y1 = 0})×(D2\{y2 = 0}),
and its quotient V ′ = U ′/ι, which is the complement to the 24 lines in Y .

Let L = k(
√
a). We make an important observation that the 24 lines of Y

are defined over the quadratic extension L/k, and that the action of the Enriques
involution σ on the 24 lines coincides with the action of the Galois group Gal (L/k).
This fact will simplify subsequent computations of various cohomology groups.

The following proposition explains the rôle played by the 24 lines.

Proposition 2.3 We have PicV ′ = 0, so that PicY is generated by the classes of
the 24 lines.

Proof. It is enough to show that the classes [li] and [sj], i, j ∈ {0, 1, 2, 3}, generate
PicV . The open set U is the complement to a finite set of points in a smooth pro-
jective surface, hence k̄[U ]∗ = k̄∗. The same property then holds for V . The spectral
sequence Hp(Z/2, Hq(U,Gm))⇒ Hp+q(V ,Gm) gives rise to the exact sequence

0→ Z/2→ PicV → (PicU)ι → 0. (11)

(The exactness on the right is due to the fact that H2(Z/2, k̄∗) = 0.) Because of our
assumption that E1 and E2 are not isogenous we have the following isomorphisms
of abelian groups:

PicU = PicD1 × PicD2 ' E1(k̄)⊕ Z⊕ E2(k̄)⊕ Z.

Therefore, (PicU)ι ' E1[2] ⊕ E2[2] ⊕ Z2. The natural map PicV → PicU is the
direct sum of the map PicV → PicD1 ' E1(k̄)⊕ Z that sends [li] to [i], and sends
all [sj] to 0, and the map PicV → PicD2 ' E2(k̄) ⊕ Z that sends [sj] to [j], and
[li] to 0. From this description it is clear that the images of the classes [li] and [sj]
generate E1[2]⊕ E2[2]⊕ Z2 = (PicU)ι.
It remains to show that the non-trivial element of the kernel of the map PicV →

PicU is a linear combination of the classes [li] and [sj]. In PicY we have

−
∑
[lij] = 2

∑
[li]− 4[f1] = 2

∑
[sj]− 4[f2].
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The property k̄[V ]∗ = k̄∗ implies that the kernel of the restriction map PicY → PicV
is the abelian group Z16 freely generated by the classes of the 16 lines lij. Hence
α :=

∑
[li]− 2[f1] ∈ PicV has exact order 2. Due to the fact that in PicV we have

[f1] = 2[li] for any i we obtain α = [l0] + [l1] − [l2] − [l3]. On the other hand the
inverse image of the divisor

∑
li−2f1 in PicU is div (y1). This completes the proof.

QED

This proposition implies that Pic (Y ×k L) = PicY .
Define the divisor E on Y as follows:

E = s0 + s2 − f1 − f2 + l0 + l2 +
∑

l0j +
∑

l2j. (12)

Let F be the norm torus R1L/kGm. Explicitly F is given by z
2
1 − az22 = 1. The

module of characters F̂ is the abelian group Z on which Γ acts through its quotient
Gal(L/k); the non-trivial element of Gal(L/k) acts as the multiplication by −1.
This implies that H1(k, F̂ ) = Z/2. Fix a generator of F̂ , and define λ : F̂ → PicY
as the homomorphism which sends this generator to [E]. It is clear from (10) that
div (y) = E + σE, hence λ is a homomorphism of Γ-modules.

By the description of torsors defined by a function whose divisor is a norm ([2],
2.4.2) Y -torsors under F of type λ exist. Any such torsor contains an open subset
given by the simultaneous equations (8) and y = α(z21 − az

2
2) 6= 0, for some α ∈ k

∗.
Let p : Z → Y be the torsor corresponding to α = 1.

2.2. Brauer groups of X and Y

Keep the notation and assumptions as above. We start with an almost obvious

Lemma 2.4 H1(k,PicX/tors) = 0

Proof. Since f : Y → X is an unramified double covering, we have an exact sequence

0→ Z/2→ PicX → (PicY )σ → 0,

where (PicY )σ is the σ-invariant part of PicY . (This is the exact sequence of low
degree terms of the spectral sequence Hp(Z/2, Hq(Y ,Gm))⇒ Hp+q(X,Gm).) Thus
we have an isomorphism of Galois modules PicX/tors = (PicY )σ, with the trivial
action of the Galois group. Since H1(k,Z) = 0, the proposition follows. QED

Corollary 2.5 f ∗Br 1X = Br 0Y

Proof. We have an injective map Br 1X/Br 0X → H1(k,PicX), which is functorial
in X. It remains to note that the homomorphism f ∗ : H1(k,PicX)→ H1(k,PicY )
factors through H1(k,PicX/tors) = 0. QED
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Proposition 2.6 (i) The map λ∗ : H
1(k, F̂ ) = Z/2 → H1(k,PicY ) is an isomor-

phism.

(ii) The quaternion algebra (y, a) ∈ Br k(Y ) is unramified on Y . Its class gener-
ates Br 1Y = Br λY modulo Br 0Y . The canonical map Br 1Y/Br 0Y → H1(k,PicY )
is an isomorphism.

(iii) Define V1 as the complement to the union of l00, l01, l10, l11 in Y . Then the
restriction map Br 1Y → Br 1V1 is an isomorphism.

Proof. (i) We already saw that Pic (Y ×kL) = PicY . ThusH1(Gal (k̄/L),PicY ) = 0
and so the inflation map H1(Gal (L/k),PicY ) → H1(k,PicY ) is an isomorphism.
Note that Gal (L/k) = Z/2 acts on PicY as σ.

Recall that if M is a Z/2-module, then the Tate cohomology groups of M are
2-periodic, and more precisely, Ĥ2i(Z/2,M) is the quotient of the invariants by the
norms, and Ĥ2i+1(Z/2,M) is the quotient of the anti-invariants by the elements of
the form x−σx. Our aim is to show that the cohomology class of the anti-invariant
element [E] generatesH1(Z/2,PicY ) = Z/2. Then (i) will follow from the definition
of λ.

The singular fibres of π1 correspond to x = ±
√
a,±b

√
a. In PicY each such fibre

can be written as 2[li] +
∑
j[lij ]. Let K = k̄(x). The restriction to the generic fibre

YK gives rise to the exact sequence of Z/2-modules

0→ Vert→ PicY → PicYK → 0. (13)

From the explicit action of σ it is clear that all the fibres of π1 are split, therefore
H1(Z/2,Vert) = 0 (in fact, Vert is a permutation module).

Now YK is a curve of genus 1 over K. We turn it into an elliptic curve with
rational 2-division points by choosing the section s0 as the origin of the group law.
We have an exact sequence

0→ Pic 0YK → PicYK → Z→ 0. (14)

Since PicY is generated by the classes of the 24 lines (Proposition 2.3) of which all
except the sj are components of the fibres of π1, we see that Pic YK is generated by
the restrictions of the [sj] to the generic fibre YK . Hence Pic 0YK is generated by
the differences [sj]− [sj′ ], hence Pic 0YK ' (Z/2)2. (In particular, the rank of YK is
0.) We summarize this by rewriting (14) as

0→ (Z/2)2 → PicYK → Z→ 0, (15)

where (Z/2)2 is generated by [s1]− [s0] and [s2]− [s0], and has trivial action of σ.
Let us analyse the sequence (15) with respect to the action of σ. Choose [s0] as

a lifting of the element 1 ∈ Z to PicYK . Then the connecting map H0(Z/2,Z) →
H1(Z/2, (Z/2)2) = (Z/2)2 sends 1 to [s0]− [s1]. This proves that H1(Z/2,PicYK) =
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Z/2, with generator [s2] − [s0] = [s2] + [s0] − [f2]. (The last equality is due to the
fact that in the Picard group of the generic fibre YK we have [f2] = 2[sj].)

Now return to (13) and note that [E] is an anti-invariant lifting of [s2]+[s0]−[f2] ∈
PicYK to PicY . Hence the non-trivial element of H

1(Z/2,PicYK) comes from
H1(Z/2,PicY ). This shows that the map H1(Z/2,PicY ) → H1(Z/2,PicYK) =
Z/2 is an isomorphism, and the non-trivial element of H1(Z/2,PicY ) is given by
[E].

(ii) Using (10) it is straightforward to check that (y, a) is unramified on Y , and
hence belongs to Br 1Y . We show that the image of this element under the canonical
map Br 1Y → H1(k,PicY ) is given by [E].

The 2-torsion of the one-dimensional torus F is Z/2. Let ε : Z/2 → F be the
natural injection. We also have F̂ /2 = Z/2, and the dual surjection ε̂ : F̂ → Z/2.
The functoriality of the cup-product implies that α ∪ ε∗β = ε̂∗(α)∪ β ∈ Br k(Y ) for
any α ∈ H1(k, F̂ ) and β ∈ H1(k(Y ),Z/2). Let β = [y] ∈ k(Y )∗/k(Y )∗2, and let α be
the non-trivial element of H1(k, F̂ ). It is easy to check that ε̂∗(α) ∈ H1(k, F̂ /2) =
k∗/k∗

2
is the class of a. Therefore, (a, y) can be written as the cup-product α∪ ε∗[y].

Let [Z] ∈ H1(Y, F ) be the class of the torsor p : Z → Y of type λ defined in the
end of the previous subsection. The local equation y = z21 − az

2
2 of Z shows that

the image of [Z] in H1(k(Y ), F ) is ε∗[y]. Hence α ∪ ε∗[y] is the image in Br k(Y ) of
α ∪ [Z] ∈ Br 1Y . The formula of Thm. 4.1.1 of [13] says that the image of α ∪ [Z]
under the canonical map Br 1Y → H1(k,PicY ) is λ∗(α). By the definition of λ this
class is given by [E], hence, by (i), it is the non-trivial element of H1(k,PicY ). The
proof of (ii) is now complete.

(iii) Let M ⊂ PicY be the Z/2-submodule generated by [l00], [l01], [l10], [l11].
We have k̄[V1]

∗ = k̄∗ since the same is true for the smaller open set V . Hence
M is freely generated by these four classes. The action of σ is such that it swaps
[l00] and [l11], and also [l10] and [l01]. Hence M is an induced module, so that
H1(Z/2,M) = H2(Z/2,M) = 0.

We claim that PicV 1 is torsion-free. Indeed, since k̄[V ]
∗ = k̄∗ the kernel of the

restriction map PicV 1 → PicV is freely generated by the 12 remaining classes [lij ].
Thus a non-zero torsion element of PicV 1 restricts to a non-zero torsion element of
PicV . It is well-known that every such element comes from τ ∈ PicY such that
2τ is a sum of 8 or 16 of the [lij ] (see [9]; alternatively, this can be checked using
the calculations in the proof of Proposition 2.3). So we cannot create a torsion
element by removing only four such lines from Y . We thus have an exact sequence
of Z/2-modules

0→M → PicY → PicV 1 → 0,

which implies that H1(Z/2,PicY ) → H1(Z/2,PicV 1) is an isomorphism. Since
both modules are torsion-free we conclude that H1(k,PicY ) → H1(k,PicV 1) is
also an isomorphism. Now (iii) follows from the last statement of (ii). QED
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Now let us turn to the transcendental part of BrX. The rational functions x2

and t2 are in the σ-invariant part of k(Y ), hence they can be considered as rational
functions on X. Let A ∈ Br k(X) be the class of the quaternion algebra

((b2 − 1)(x2 − a), (c2 − 1)(t2 − a)). (16)

Proposition 2.7 The class AY ∈ Br k(Y ) has the following properties.
(1) AY is unramified over V1; it is unramified over Y if and only if either −d or
−ad is a square in k∗.
(2) The image of AY in Br k̄(Y ) is unramified.
(3) The image of AY in Br k̄(Y ) is non-zero.

Proof. We prove (1) and (2) at the same time. Let us compute the residues of AY .
It is clear that AY is unramified away from the 24 lines. (The only thing to check is
that the residues at x =∞ and t =∞ are trivial.) We now compute the residues of
AY at the 24 lines, that is, the points of codimension 1 that are not in V ′ ⊂ Y . Each
of these residue fields contains L. We note that if x2 = ab2, then (b2−1)(x2−a) is a
square in L. Similarly, if t2 = ac2, then (c2 − 1)(t2 − a) is a square in L. Therefore,
all the residues are trivial, except possibly at the points A = l0 ∪ l1, B = s0 ∪ s1,
C = l00 ∪ l11, and D = l01 ∪ l10. It is clear that resAAY = 0 since valA(x2 − a) = 2,
whereas t2 − a is a unit. A similar argument shows that resBAY = 0. We have
valC(x

2− a) = valC(t2− a) = 1. In order to compute resCAY we replace (16) by an
equivalent class

((b2 − 1)(x2 − a), d(c2 − 1)(x2 − a)(x2 − ab2)(t2 − ac2)) =

((b2 − 1)(x2 − a),−d(b2 − 1)(c2 − 1)(x2 − ab2)(t2 − ac2)).

This shows that resCAY = −d. By symmetry we also have resDAY = −d. This
proves (1) and (2).

To prove (3) it is enough to show that the restriction of AY to the generic fibre YK
is a non-zero element of Br YK . We think of YK as an elliptic curve with rational 2-
division points, with s0 as the origin of the group law. Recall that E2 is the Jacobian
of D2, so that D2 ' E2. It is clear from the equation of Y that YK is isomorphic to
the quadratic twist of the elliptic curve E2 ×k K by ρ(x) = (x2 − a)(x2 − ab2). If
Y 2 = T (T − p)(T − q) is an equation of E2, then Y 2 = T (T − ρ(x)p)(T − ρ(x)q) is
an equation of YK .

The 2-torsion of the Brauer group of such an elliptic curve is described as follows
([13], Thm. 4.1.1, Example, p. 63, and Exercise 2, p. 91). Every element of Br YK
which vanishes at the origin is of the form (A, T ) + (B, T − p) for some A,B ∈ K∗.
This element is 0 if and only if the class of (A,B) in (K∗/K∗2)2 is the image of a
K-point of YK under the Kummer map YK(K)/2YK(K) → H1(K, (Z/2)2). Since
YK(K) consists of 2-division points, we only need to exhibit their images under the
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Kummer map. These are (pq,−ρ(x)p) = (1, ρ(x)), (ρ(x)p, p(p − q)) = (ρ(x), 1) and
the product of these two elements.

Let us consider the restriction of AY to YK . By Tsen’s theorem BrK = 0, hence
any element of Br YK vanishes at the origin. Without loss of generality we may
assume that T = (t+

√
a)/(t−

√
a). Now our element is given by

(x2 − a, t2 − a) = (x2 − a, (t+
√
a)(t−

√
a)−1) = (x2 − a, T ).

Since (x2 − a, 1) ∈ (K∗/K∗2)2 is visibly not in the image of YK(K)/2YK(K) we
conclude that the restriction of AY to YK is non-zero. This proves (3). QED

The second Betti number of any Enriques surface X equals the rank of PicX
(which is 10), and the first Betti number is 0. Thus BrX is dual to the torsion
subgroup of PicX (see [4], II, Cor. 3.4, III, (8.12)), hence BrX = Z/2.

Corollary 2.8 The image of A ∈ Br k(X) in Br k̄(X) is unramified. This image is
the unique non-trivial element of BrX. In particular, the map f ∗ : BrX → BrY is
injective.

Proof. A⊗ k̄ is obviously unramified away from the images of the 24 lines and the
curves given by x =∞ and t =∞. The inverse image of any smooth rational curve
in X is the disjoint union of two such curves in Y . Thus if A⊗ k̄ is ramified at the
generic point of such a curve on X, then AY ⊗ k̄ is also ramified. By symmetry it
remains to consider the image of, say x =∞. We note that t2− a is a unit, whereas
x2−a comes from k̄(P1

k̄
) via the projection X → P1

k̄
. However, the fibre of this map

at ∞ is double, hence any function coming from k̄(P1
k̄
) has even valuation. Thus

the residue is trivial.

Finally, A⊗ k̄ 6= 0 since the AY ⊗ k̄ 6= 0 by Proposition 2.7 (3). QED

It seems to be unknown whether the map f ∗ : BrX → BrY is injective for any
Enriques surface X, where f : Y → X is a K3 covering of X.

Now we are ready to prove the main result of this section.

Theorem 2.9 Suppose that neither −d nor −ad is a square in k∗. Then BrX =
Br 1X, which implies f

∗BrX = Br 0Y .

Proof. Let us prove the first statement. Suppose that B ∈ BrX is such that
B ⊗ k̄ 6= 0. Since BrX = Z/2, from Corollary 2.8 we obtain B ⊗ k̄ = A ⊗ k̄. Let
BY = f ∗B. By Proposition 2.7 (1) BY − AY is unramified on V1, hence belongs to
Br 1V1 = Br 1Y (Proposition 2.6 (iii)). Thus AY − BY is unramified, hence AY is
also unramified. This contradicts Proposition 2.7 (1). Thus B ∈ Br 1X. We have
proved that BrX = Br 1X. The second statement now follows from Corollary 2.5.
QED
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2.3. Counter-example to weak approximation not explained
by the Manin obstruction

Let k = Q be the field of rational numbers. Let a and b = p be primes such that a is
1 modulo 4, and a is not a square modulo p. Let c be an integer such that c(c2− 1)
is not divisible by p. Consider the Kummer surface Y over Q given by the affine
equation

y2 = (x2 − a)(x2 − ap2)(t2 − a)(t2 − ac2), (17)

and the corresponding Enriques surface X = Y/σ.

If we choose a = 5, b = 13, c = 2 as in the Example after Lemma 2.2, then the
above conditions are satisfied. The elliptic curves E1 and E2 are not isogenous over
Q, so that all the computations of the previous subsection are valid. Moreover, the
set X(Q) is Zariski dense in X.

We now construct a family of local points on X. By substituting x = t = p−1

into (17) we obtain y2 = p−8α2, where α is a p-adic unit congruent to 1 modulo p.
Let Np be the Qp-point on Y with coordinates x = t = p−1, y = p−4α. Consider
the Q-point M on Y with coordinates x = t = 0, y = a2pc. For any prime q 6= p we
define Nq = M , and we do likewise for the archimedian place. We obtain an adelic
point {Nv} on Y .

Theorem 2.10 The adelic point {f(Nv)} is in X(AQ)Br but not in the closure of
X(Q). Hence X is a counter-example to weak approximation that is not accounted
for by the Brauer–Manin obstruction.

Proof. In our previous notation d = 1. Since −1 and −a are not squares in Q∗,
Theorem 2.9 applies. Since f ∗BrX = BrQ the first statement immediately follows
from the projection formula.

By the global reciprocity we have
∑
v∈ΩQ

invv(a
2pc, a) = 0. On the other hand,

invp(a
2pc, a) 6= 0 since a is not a square modulo p. We have invp(p−4α, a) = 0 since

α and a are p-adic units. It follows that the adelic point {Nv} ∈ Y (AQ) does not
satisfy the Brauer–Manin condition with respect to the Azumaya algebra (y, a).

Recall that p : Z → Y is a Y -torsor of type λ defined in the end of Subsection 2.1.
We now compose the torsors p : Z → Y and f : Y → X. Indeed, all the conditions
of Proposition 1.4 are satisfied. (The image of λ is H-invariant, as it is generated
by the σ-anti-invariant element [E].) We obtain an X-torsor g : Z → X under a
k-group G; this group is an extension

1→ F → G→ Z/2→ 1.

The class of (y, a) is in Br λY by Proposition 2.6 (ii). By the descent theory ([13],
Thm. 6.1.2) the fact that the adelic point {Nv} ∈ Y (AQ) does not satisfy the
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Brauer–Manin condition given by an element of Br λY implies that {Nv} 6∈ Y (AQ)p.
The closure of X(Q) in X(AQ) is contained in X(AQ)g, thus to prove the theorem
it is enough to prove the following

Proposition 2.11 The adelic point {Pv} = {f(Nv)} is not contained in the set
X(AQ)g. There is a non-abelian descent obstruction to weak approximation on X
for {Pv}.

Proof. We have an exact sequence of pointed sets

Z/2→ H1(Q, F )→ H1(Q, G)→ H1(Q,Z/2)

Let us compute the image of the non-trivial element h ∈ Z/2 under the connecting
map δ : Z/2→ H1(Q, F ) = Q∗/NL/Q(L

∗). If ϕh is a lifting of h to G(Q), then δ(h)
is the class of the cocycle σ(γ) = ϕ−1h ∙

γ(ϕh) (see [10], I.5.4). We obtain (cf. (5))

γ(ϕh(z)) = ϕh(σ(γ) ∙
γz), z ∈ Z(Q), γ ∈ Γ.

Let Zσ be the twisted torsor of Z by σ. The displayed formula shows that ϕh is
an isomorphism of Q-varieties Zσ → Z. We also have ϕh(tz) = τh(t)ϕh(z) for any
t ∈ F (Q), z ∈ Z(Q), where τh is the natural action of H(Q) on F (Q) (as the proof of
Proposition 1.4; note that in our case τh(t) = t

−1). This shows that we actually have
an isomorphism of Y -torsors h∗(Z)σ → h∗(Z). Therefore [h

∗(Z)] − [σ] = [h∗(Z)],
so that δ(h) = [σ] = [h∗(Z)] − [h∗(Z)]. To compute this difference we can restrict
the classes to H1(Q(Y ), F ). On the one hand, the local equation y = z21 − az

2
2 of Z

shows that h∗[y] = [y] + [−1]. On the other hand, the map τh(t) = t−1 induces the
trivial action on H1(k(Y ), F ), since the latter group is 2-torsion. Hence h∗[y] = [y].
Putting all this together we conclude that δ(h) is the class of −1 in Q∗/NL/Q(L∗).

Since a is a prime which is 1 mod 4, −1 is the norm of an element of L = Q(
√
a).

Thus δ is trivial. The same is of course true if the ground field k = Q is replaced by
any bigger field. We obtain a commutative diagram of pointed sets with exact rows

H1(Q, F ) −−−→ H1(Q, G) −−−→ H1(Q,Z/2)


y



y



y

1 −−−→
∏
v∈ΩQ

H1(Qv, F ) −−−→
∏
v∈ΩQ

H1(Qv, G) −−−→
∏
v∈ΩQ

H1(Qv,Z/2)

Since H1(Qv, F ) is either zero or Z/2, the map H
1(Qv, F )→ H1(Qv, G) is injective

for any place v. The diagonal map H1(Q,Z/2)→
∏
v∈ΩQ

H1(Qv,Z/2) is obviously
injective.

Suppose that {Pv} ∈ X(AQ)g. Set gv = [g−1(Pv)] ∈ H1(kv, G). Then by definition
{gv} is in the diagonal image of H1(Q, G) in

∏
v∈ΩQ

H1(Qv, G). Since gv is the image

of fv = [p
−1(Nv)], the injectivity of the map H

1(kv, F ) → H1(kv, G) implies by an
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easy diagram chase that {fv} is in the diagonal image of H1(k, F ). But this is not
possible because {Nv} does not belong to Y (AQ)p. QED

For the sake of completeness let us also give an alternative argument that {f(Nv)}
cannot be approximated by a rational point (cf. [12]).

Since (y, a) is unramified on Y there exists a finite set of places S such that for
v /∈ S the local invariant of (y, a) at any Qv-point on Y is 0. The involution σ
sends (y, a) to (−y, a). The quaternion algebra (−1, a) is trivial because the prime
a is congruent ot 1 modulo 4, and so is a norm for Q(

√
−1)/Q. Thus (y, a) is

σ-invariant.

Suppose that {f(Nv)} is in the closure of X(Q). Since f : Y → X is unramified,
there exists a finite set of quadratic fields k1, . . . , kn with the property that for any
P ∈ X(Q) the residue field of a closed point of Y over P is either Q or one of
the ki. Let pi be a prime that is inert in ki. Suppose that R ∈ X(Q) is close
enough to f(Nv) in the Qv-topology for all v ∈ S ∪ {p1, . . . , pn}. If Q(f−1(P )) is a
quadratic field, then it must be split at all the primes pi. This is a contradiction.
Therefore, the inverse image of R in Y must consist of two Q-points, say R1 and
R2. By the implicit function theorem for the local field Qv we know that Nv is
very close to either R1 or R2. But (y, a) is σ-invariant, hence for any place v we
have invv((y, a)(R1)) = invv((y, a)(R2)). Since the local invariant is locally constant
we see that invv((y, a)(Nv)) = invv((y, a)(R1)) for all v ∈ S ∪ {p1, . . . , pn}. Since
invv((y, a)(Nv)) = 0 for v /∈ S, we obtain

∑

v∈ΩQ

invv((y, a)(Nv)) =
∑

v∈ΩQ

invv((y, a)(R1)) = 0

by the global reciprocity. But this sum is non-zero, as we showed in the beginning
of proof of Theorem 2.10.
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