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1 An elliptic curve is defined as a smooth cubic curve in P2k with a k-point. In
lectures we proved that every elliptic curve with a k-point which is a flex has a
Weierstrass form. Here is the proof that every elliptic curve over a field of charac-
teristic different from 2 and 3 is isomorphic to an ellitpic curve in short Weierstrass
form.

Let C ⊂ P2k be a smooth cubic with a k-point P . If P is a flex we are done by
a result from lectures, so suppose it is not. Then the tangent TP,C meets C at a
point Q 6= P . Let us make a linear change of coordinates so that P = (1 : 0 : 0)
and Q = (0 : 0 : 1). Then TP,C is given by y = 0. Then the equation of C is
xz2+yq(x, y, z) = 0, where q(x, y, z) is homogeneous of degree 2. In the affine plane
y = 1 this becomes

z2l1(x) + zl2(x) + q(x, 1, 0) = 0,

where l1(x) is of degree 1, and l2(x) is of degree at most 1. After a linear change of
variables t = l1(x) we get

z2t+ zl(t) +m(t) = 0, (1)

where l(t) is linear andm(t) is quadratic. Now multiply by 4t and complete a square,
that is, let u = 2tz + l(t). Then

u2 = l(t)2 − 4tm(t) (2)

can be reduced to a short Weierstrass form because the right hand side is a cubic
polynomial in t.

If you feel confident in algebraic geometry, check that the projective closures of
the curves (1) and (2) are isomorphic. [Hint: the inverse map z = (u − l(t))/2t
is defined outside t = 0. But (2) implies that (u − l(t))/2t = −2m(t)/(u + l(t))
provided both fractions are defined. The map z = −2m(t)/(u+ l(t)) sends the point
t = 0, u = l(t) to z = −m(0)/l(0), and the point t = 0, u = −l(t) to the point at
infinity of (1) where t = 0. The point at infinity of (2) goes to the point at infinity
of (1) where z = 0. These arguments can be used to cover both curves by open
subsets and to exhibit polynomial maps that are inverses of each other.]
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2 Let E be the elliptic curve
y2 = G(x),

where G(x) ∈ Z[x] is a separable cubic polynomial. For (x′, y′) = 2(x, y) the dupli-
cation formula gives

x′ =
F (x)

4G(x)
=
G′(x)2 − 8xG(x)

4G(x)
.

Since G(x) is separable, F (x) and G(x) are coprime in Q[x]. Euclid’s algorithm
then produces polynomials Q(x), C(x) ∈ Z[x] of degrees 2 and 3, respectively, such
that F (x)Q(x)+4G(x)C(x) = c, for some constant c ∈ Z. We homogenize all these
polynomials and so obtain

F (x, y)yQ(x, y) + 4yG(x, y)C(x, y) = cy7.

Hence we obtain homogenous forms A(x, y) and B(x, y) with integral coefficients of
degree 3 such that if x = p/q, p′ = F (p, q) and q′ = 4qG(p, q), then

A(p, q)p′ +B(p, q)q′ = cq7.

Reversing the roles of x and y, one finds two more homogenous forms A′(x, y) and
B′(x, y) with integral coefficients of degree 3 such that

A′(p, q)p′ +B′(p, q)q′ = cp7.

These are the equations we used in the theory of heights in lectures.
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