Elliptic curves

Remarks on polynomials

November 24, 2009

1 An elliptic curve is defined as a smooth cubic curve in \mathbb{P}_{k}^{2} with a k-point. In lectures we proved that every elliptic curve with a k-point which is a flex has a Weierstrass form. Here is the proof that every elliptic curve over a field of characteristic different from 2 and 3 is isomorphic to an ellitpic curve in short Weierstrass form.

Let $C \subset \mathbb{P}_{k}^{2}$ be a smooth cubic with a k-point P. If P is a flex we are done by a result from lectures, so suppose it is not. Then the tangent $T_{P, C}$ meets C at a point $Q \neq P$. Let us make a linear change of coordinates so that $P=(1: 0: 0)$ and $Q=(0: 0: 1)$. Then $T_{P, C}$ is given by $y=0$. Then the equation of C is $x z^{2}+y q(x, y, z)=0$, where $q(x, y, z)$ is homogeneous of degree 2 . In the affine plane $y=1$ this becomes

$$
z^{2} l_{1}(x)+z l_{2}(x)+q(x, 1,0)=0
$$

where $l_{1}(x)$ is of degree 1 , and $l_{2}(x)$ is of degree at most 1 . After a linear change of variables $t=l_{1}(x)$ we get

$$
\begin{equation*}
z^{2} t+z l(t)+m(t)=0 \tag{1}
\end{equation*}
$$

where $l(t)$ is linear and $m(t)$ is quadratic. Now multiply by $4 t$ and complete a square, that is, let $u=2 t z+l(t)$. Then

$$
\begin{equation*}
u^{2}=l(t)^{2}-4 t m(t) \tag{2}
\end{equation*}
$$

can be reduced to a short Weierstrass form because the right hand side is a cubic polynomial in t.

If you feel confident in algebraic geometry, check that the projective closures of the curves (1) and (2) are isomorphic. [Hint: the inverse map $z=(u-l(t)) / 2 t$ is defined outside $t=0$. But (2) implies that $(u-l(t)) / 2 t=-2 m(t) /(u+l(t))$ provided both fractions are defined. The map $z=-2 m(t) /(u+l(t))$ sends the point $t=0, u=l(t)$ to $z=-m(0) / l(0)$, and the point $t=0, u=-l(t)$ to the point at infinity of (1) where $t=0$. The point at infinity of (2) goes to the point at infinity of (1) where $z=0$. These arguments can be used to cover both curves by open subsets and to exhibit polynomial maps that are inverses of each other.]

2 Let E be the elliptic curve

$$
y^{2}=G(x),
$$

where $G(x) \in \mathbf{Z}[x]$ is a separable cubic polynomial. For $\left(x^{\prime}, y^{\prime}\right)=2(x, y)$ the duplication formula gives

$$
x^{\prime}=\frac{F(x)}{4 G(x)}=\frac{G^{\prime}(x)^{2}-8 x G(x)}{4 G(x)}
$$

Since $G(x)$ is separable, $F(x)$ and $G(x)$ are coprime in $\mathbf{Q}[x]$. Euclid's algorithm then produces polynomials $Q(x), C(x) \in \mathbf{Z}[x]$ of degrees 2 and 3, respectively, such that $F(x) Q(x)+4 G(x) C(x)=c$, for some constant $c \in \mathbf{Z}$. We homogenize all these polynomials and so obtain

$$
F(x, y) y Q(x, y)+4 y G(x, y) C(x, y)=c y^{7}
$$

Hence we obtain homogenous forms $A(x, y)$ and $B(x, y)$ with integral coefficients of degree 3 such that if $x=p / q, p^{\prime}=F(p, q)$ and $q^{\prime}=4 q G(p, q)$, then

$$
A(p, q) p^{\prime}+B(p, q) q^{\prime}=c q^{7}
$$

Reversing the roles of x and y, one finds two more homogenous forms $A^{\prime}(x, y)$ and $B^{\prime}(x, y)$ with integral coefficients of degree 3 such that

$$
A^{\prime}(p, q) p^{\prime}+B^{\prime}(p, q) q^{\prime}=c p^{7}
$$

These are the equations we used in the theory of heights in lectures.

