Algebra III M3P8, M4P8

Solutions Sheet 1

1. (a) and (b) are easy.
(c) It is not hard to find zero divisors in R, hence this is not an integral domain, hence not a field. R has no non-zero nilpotents. An idempotent is a continuous function that only takes values 0 and 1 . Hence it is either identically 0 or identically 1. R^{*} is the set of functions with non-zero values.
2. (a) If $x^{n}=0$, then $(a x)^{n}=a^{n} x^{n}=0$, so the only non-obvious property is closedness under addition. If $x^{n}=y^{m}=0$, then the binomial formula shows that $(x+y)^{m+n}=0$.
(b) If $x^{n}=0$, then $\left(1+x+x^{2}+\ldots x^{n-1}\right)(1+x)=1$.
(c) These are elements of the form $\overline{m p}, m \in \mathbb{Z}$. Indeed, $\overline{m p}{ }^{n}=\overline{m^{n} p^{n}}=0$. All other elements are of the form \bar{a}, where $h c f\left(a, p^{m}\right)=1$. Hence there are integers b, c such that $a b+p^{m} c=1$, but then \bar{b} is the multiplicative inverse of \bar{a}.
(d) We just did it.
3. (a) is obvious.
(b) No, because $(1,0)(0,1)=(0,0)$ so $A \times B$ has zero divisors.
(c) $\operatorname{nil}(A \times B)=\operatorname{nil}(A) \times \operatorname{nil}(B)$
(d) is easy.
4. (a) is easy.
(b) We have $r=e r+(1-e) r$. Conversely, if $r=x+y, x \in e R, y \in(1-e) R$, then $e r=e x+e y=e x=x$ and $(1-e) r=(1-e) x+(1-e) y=(1-e) y=y$.
(c) $e=\overline{3}$ will do. Then $1-e=\overline{4}$. We obtain $\mathbb{Z} / 6=\overline{3} \mathbb{Z} / 6 \times \overline{4} \mathbb{Z} / 6$.
(d) There exist integers a and b such that $a p^{m}+b q^{n}=1$. Then $e=a p^{m}$ is an idempotent. Indeed, $e^{2}-e=a p^{m}\left(a p^{m}-1\right)=-a b p^{m} q^{n}$.
