M1M1: Problem Sheet 7: Integration

1. Integrate the following functions of x :
(a) $\frac{x+1}{x}$;
(b) $\frac{x}{x+1}$;
(c) $\frac{x+1}{x-1}$.
2. Using partial fractions (or otherwise) find the integrals of
(a) $\frac{1}{x(2-3 x)}$;
(b) $\frac{x}{x^{2}-1}$;
(c) $\frac{x^{2}}{x^{3}-1}$;
(d) $\frac{1}{x\left(x^{2}+1\right)}$.
3. Use an appropriate substitution to integrate:
(a) $\frac{e^{x}}{e^{x}+1}$;
(b) $\sin ^{2} x \cos x$;
(c) $\frac{\sin x}{1+\cos x}$;
(d) $\frac{1}{\sqrt{1-x^{2}}}$;
(e) $\frac{1}{\sqrt{x^{2}-1}}$;
(f) $\cos x e^{\sin x}$.
4. Use 'integration by parts' to integrate:
(a) $e^{x} \cos x$;
(b) $\log x$;
(c) $x^{2} \cos x ;$
(d) $\cos ^{-1} x$.
5. Integrate the following functions (using any appropriate method):
(a) $\sqrt{x^{2}-1}$;
(b) $\frac{\sqrt{x}}{1+x}$;
(c) $\operatorname{cosec} x$;
(d) $\frac{\tan ^{-1}(x)}{1+x^{2}}$.

Evaluate the following definite integrals:

$$
\begin{aligned}
& \text { (e) } \int_{0}^{\pi / 2} \frac{d x}{5+4 \cos x} ; \quad(f) \int_{0}^{\pi / 2} \frac{d x}{(\sin x+\cos x)^{2}} \\
& \text { (g) } \int_{0}^{1} \frac{d x}{\left(1+x^{2}\right)^{3 / 2}} ; \quad(h) \int_{1}^{2} \frac{d x}{x^{2}+3 x+1}
\end{aligned}
$$

6. Show that [NB MAPLE can't do this!]

$$
\int_{0}^{\pi} \frac{x d x}{1+\cos ^{2} x}=\frac{\pi}{2} \int_{0}^{\pi} \frac{d y}{1+\cos ^{2} y}=\frac{\pi^{2}}{2^{3 / 2}} .
$$

7. Show that

$$
\int_{0}^{\pi} \frac{d x}{\alpha-\cos x}=\frac{\pi}{\sqrt{\alpha^{2}-1}}, \quad \alpha>1 .
$$

8. The integrals $I\left(t_{0}\right)$ and $J\left(t_{0}\right)$ are defined as

$$
\begin{aligned}
& I\left(t_{0}\right)=\int_{-\infty}^{\infty} \frac{d t}{\cosh t+\cosh t_{0}}, \quad t_{0}>0 \\
& J\left(t_{0}\right)=\int_{-\infty}^{\infty} \frac{d t}{\cosh t+\cos t_{0}}, \quad 0<t_{0}<\pi / 2
\end{aligned}
$$

Using the substitution $p=e^{t}$, or otherwise, show that

$$
I\left(t_{0}\right)=\frac{2 t_{0}}{\sinh t_{0}}, \quad J\left(t_{0}\right)=\frac{2 t_{0}}{\sin t_{0}} .
$$

9. Determine whether or not the integral

$$
\int_{0}^{\infty} f(x) d x \quad \text { exists in the following cases: }
$$

(a) $f(x)=x^{\alpha} \sqrt{2+\cos x} \quad$ where α is a real constant.
(b) $f(x)=\left(x^{2}-1\right)^{-1 / 3}$.
(c) $f(x)=\frac{1}{(x+1) \log x}$.
(d) $f(x)=\frac{(x+1) \sin x}{x^{3 / 2}(x-\pi)}$.
10. If

$$
F_{n}=\int_{0}^{1} x^{n} e^{x} d x
$$

show that

$$
F_{n}=e-n F_{n-1}, \quad n=1,2, \ldots
$$

Hence, evaluate F_{4}.
11. If

$$
I_{n}=\int_{0}^{\infty} x^{n} e^{-x^{2}} d x
$$

where n is a positive integer, show that

$$
I_{n}=\left(\frac{n-1}{2}\right) I_{n-2} \quad \text { for } n>1
$$

Hence, evaluate I_{5}.
12. Given that

$$
u_{n}(x)=\int x^{n} \cos x d x, \quad v_{n}(x)=\int x^{n} \sin x d x
$$

by performing a single (complex) integration, show that

$$
\begin{aligned}
& u_{n}(x)=x^{n} \sin x-n v_{n-1}(x) \\
& v_{n}(x)=-x^{n} \cos x+n u_{n-1}(x)
\end{aligned}
$$

Hence, evaluate

$$
\int x^{4} \sin x d x
$$

13. If

$$
I_{n}=\int_{0}^{\pi / 4} \tan ^{n} x d x
$$

show that for $n>1$

$$
I_{n}=\frac{1}{n-1}-I_{n-2}
$$

Hence, evaluate I_{5}.
14. If

$$
I_{n}=\int_{0}^{1} x^{n} \sqrt{1+x} d x, \quad n=0,1,2, \ldots
$$

show, by first bounding the integrand, that

$$
\frac{1}{n+1}<I_{n}<\frac{\sqrt{2}}{n+1}
$$

Derive the recurrence relation for $n>0$

$$
(3+2 n) I_{n}=2^{5 / 2}-2 n I_{n-1}
$$

From the two previous results, deduce that

$$
I_{n}>\frac{\sqrt{2}}{n+3 / 2}
$$

and using the various inequalities you have found, prove that as $n \rightarrow \infty$,

$$
n I_{n} \rightarrow \sqrt{2}
$$

Line, Area and Volume integrals

15. Find the length of the curve $y=\sqrt{1-x^{2}}$ between $x=0$ and $x=1$.
16. The cycloid curve we considered in lectures was given parametrically by $x=t-\sin t, y=1-\cos t$. Find the length of this curve between the points $(0,0)$ and $(2 \pi, 0)$.
17. The portion of the parabola $y=1-x^{2}$ in $y>0$ is rotated about the x-axis. What is the volume of the shape so formed?
18. The curve $y=1 / x$ for $x>1$ is rotated about the x-axis. Calculate, if possible, the volume and the surface area so produced. Do you find the result strange?
19. Consider the integral of $\exp \left(-x^{2}-y^{2}\right)$ over the whole (x, y)-plane,

$$
I=\iint_{\mathbb{R}^{2}} e^{-x^{2}-y^{2}} d A
$$

(a) Using polar coordinates, and performing the r and θ integrals separately, show that $I=\pi$.
(b) using Cartesian coordinates, show that, $I=J^{2}$ where

$$
J=\int_{-\infty}^{\infty} e^{-t^{2}} d t, \quad \text { and deduce that } J=\sqrt{\pi}
$$

20. Show that the area of the ellipse

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1 \quad \text { is } \quad \pi a b
$$

Choosing a suitable parameterisation, show that its circumference, L, is

$$
L=\int_{0}^{2 \pi}\left(a^{2} \sin ^{2} \theta+b^{2} \cos ^{2} \theta\right)^{1 / 2} d \theta=C \int_{0}^{\pi}(1-k \cos \phi)^{1 / 2} d \phi
$$

for some constants C and k. (N.B. This integral cannot be evaluated in terms of elementary functions. It is known as an elliptic integral.)

This is quite a long sheet. If you don't manage to do it all, try at least a representative mixture from questions 1-8, 9, 10-14 and 15-20.

