
M3A10 Viscous Flow: Lubrication Theory – Flow in Thin Films

It is an observed fact that thin layers of fluid can prevent solid bodies from contact. The
analysis of the fluids flow in thin layers is known as lubrication theory.

Consider a solid body with surface z = h(x, y, t) close to a solid plane at z = 0. We
can regard the gap as ‘thin’ provided h is small compared to the scale L of variations in
the x and y directions. We write u = (u, v, w), where u and v have typical scales U0 and
w has typical scale W0. Then the incompressibility condition

ux + vy + wz = 0 =⇒ W0 ∼ U0h/L� U0 .

We now consider the x-component of the momentum equation,

ρ(ut + uux + vuy + wuz) = −px + µ(uxx + uyy + uzz)

Typical magnitudes of the LHS is ρU2
0 /L, while the viscous term scales as µU0/h

2, noting
that the z-derivatives dominate. In lubrication theory, we assume the inertia terms are
negligible, so that

ρU2
0 /L� µU0/h

2 =⇒ Re(h/L)2 � 1 where Re = ρU0L/µ . (4.4)

This suggests a pressure scale P ∼ µU0L/h
2. If we only keep the dominant terms, we are

left with the lubrication equations

px = µuzz

py = µvzz

pz = 0





=⇒






p = p(x, y, t)

u =
px

2µ
(z2 +Az +B)

v =
py

2µ
(z2 + Cz +D)

(4.5)

Imposing the solid body boundary conditions u = 0 on z = 0 and u = (U0, V0,W0) on
z = h, we have

u =
px

2µ
(z2 − zh) +

U0z

h
v =

py

2µ
(z2 − zh) +

V0z

h
. (4.6)

We now impose continuity of mass, by integrating ∇ · u = 0 across the layer. We first
observe that

∂

∂x

∫ h(x,y,t)

0

u(x, y, z, t) dz =

∫ h

0

∂u

∂x
dz + u(x, y, h, t)

∂h

∂x
=

∫ h

0

ux dz + U0hx (4.7)

and a similar result holds for v and y. Thus

W0 =

∫ h

0

wz dz = −
∫ h

0

(ux + vy) dz = −
∂

∂x

∫ h

0

u dz −
∂

∂y

∫ h

0

v dz + U0hx + V0hy .
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Substituting (4.6) into (4.7) and evaluating the z-integrals we obtain Reynolds’ Lubri-
cation Equation:

1

12µ

(
∂

∂x
(h3px) +

∂

∂y
(h3py)

)

= W0 − 1
2U0hx − 1

2V0hy (4.8a)

We can rewrite this relation using the kinematic boundary condition, namely that on the
surface y = h

0 =
D

Dt

(
z − h(x, y, t)

)
= −ht + w − uhx − vhy = −ht +W0 − U0hx − V0hy

to obtain
∇ · (h3∇p) = 6µ (ht +W0) (4.8b)

Hele-Shaw flow: If h is constant and U0 = V0 = W0 = 0 and (4.8) reduces to ∇2p = 0
and (u, v, 0) = ∇p/(12µ), where u and v are the values of u and v averaged over z. This
flow between two close rigid plates is called Hele-Shaw flow. Curiously, this highly viscous
flow is the easiest way to achieve two-dimensional potential flow, beloved of inviscid theory.

Slider bearing: Consider a finite plane sliding over a stationary plane, with velocity
(U0, 0, 0) so that h = h1 +α(x−U0t) where α� 1 and V0 = W0 = 0. (4.8b) thus becomes

(h3px)x = −6µαU0 or (h3ph)h = −6µU0/α .

Integrating between the two ends of the plane h = h1 and h = h2 say, where we assume
the pressure is atmostpheric, p = pa, we find

p =
6µU0

αh
+
A

h2
+B = pa +

6µU0

α(h1 + h2)h2
(h− h1)(h2 − h) .

We see that p > pa for h1 < h < h2 so we expect a force to act separating the planes.
We now find the force on the sliding plane. First we note that ||µeij || ∼ µU0/h � p ∼
µU0/(αh) Thus the pressure part of the stress dominates. This acts normally to the plate,
and the normal to the plane is in the direction of ∇(z − h) = (−α, 0, 1). Thus the x-
component of the force is O(α) times the z-component. As the motion is in the x-direction
we can interpret this that the drag force is much smaller than the lift force. The total
force per unit length in the y-direction is

∫
(p− pa) dx =

∫ h2

h1

(p− pa) dh

α
=

6µU0

α2(h1 + h2)

[

−2(h2 − h1) + (h1 + h2) ln
h2

h1

]

The quantity in square brackets can be shown to be positive for h2 > h1 as it should be.
Note that the lift force is very large for small α. It increases with µ and U0. Physically,
fluid is being dragged into the region between the planes, keeping them apart. If U0 were
negative however, then the reverse would apply, and the solid planes would soon come into
contact.
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Squeeze films – viscous adhesion: Consider now a circular disc a distance h(t) above
the plane z = 0. Then U0 = V0 = 0 and W0 = ht. Using cylindrical polars (r, θ, z), (4.8a)
becomes

h3

r
(rpr)r = 12µht =⇒ p(r, t) =

3µht
h3

(r2 +A ln r +B) .

If the disc includes r = 0 then we must have A = 0 and imposing p = pa at r = a we have

p− pa =
3µht
h3

(r2 − a2) . (4.9a)

The total force exerted on the disc in the z-direction is therefore

∫ a

0

(p− pa)2πr dr = −
3µπa4ht

2h3

The sign indicates that the thin film resists the motion, so that if ht > 0 the force is in
the negative z-direction. If a constant force (0, 0, F ) is applied to the disc for t > 0 when
h = h0, and the plane is held fixed, we can find the time T needed to separate the two.

FT = 3
2µπa

4

∫ T

0

ht

h3
dt = 3

2µπa
4

∫ ∞

h0

dh

h3
=

3µπa4

4h2
0

.

Once more, we see the strong influence of the thin gap h0 � a so that FT is large. Formally,
if we try to squeeze the fluid out of the gap an infinite time is required, although in practice
surface roughness (or if necessary molecular scales) limit the minimum separation.

Suppose now the disc has a small hole in it at r = b� a. Equation (4.7) is then

p− pa =
3µht
h3

[

(r2 − a2) + (a2 − b2)
ln(r/a)

ln(b/a)

]

. (4.9b)

The total force is now multiplied by the approximate factor (1−1/ ln(a/b)) This can make
quite a difference – even if b = 0.01a the necessary force is reduced by a factor 0.78. The
difference is that fluid can be sucked in through thw hole and spread out radially.

The journal bearing – one cylinder rotating inside another. A rotating cylin-
der can be supported inside a slightly larger cylinder by the high lubrication pressures. If
the rotating inner cylinder has radius a, and the outer cylinder has radius a(1 + ε), and
the axes of the cylinders are offset by a distance aδ (where δ < ε), it is not hard to show
that the gap between the two varies with angle around the cylinder as

h(θ) = a
(
ε− δ cos θ

)
+O(δ2) (4.10)

Now if ε� 1, so that the gap is much smaller than the cylinder radius, we can ignore the
curvature terms in the cylindrical equations (see problem sheet 1, Q4.) Essentially, we are
arguing that ∂

∂r
� 1

r
. That being the case, we obtain the lubrication equations with x
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replaced by aθ and z replaced by (a− r). If the inner cylinder rotates with angular speed
Ω then. U0 = aΩ and V0 = W0 = 0. Reynolds’ lubrication equation (4.8a) becomes

(h3pθ)θ = −6a2µΩhθ ,

which integrates to give

pθ = −6a2µΩ
(h−H0)

h3
. (4.10)

The positive constant H0 can be found by imposing periodicity in θ. The necessary integrals
can actually be evaluated easily enough but we won’t bother here. We note that as θ
increases from zero (where h is minimum), the pressure increases to a maximum, and then
decreases to a minimum. This large negative pressre can give rise to cavitation of the fluid,
as shown in the video. It also leads to a sideways force on the rotor, which can lead to
vibration. Nevertheless, rapid rotation can occur very close to a stationary support, with
low drag, which is of great practical importance.

Impact of a sphere on a plane: When a sphere of radius a is a distance h0 from
the plane, we can show that at a radial distance r

h(r) = h0 + 1
2

r2

a
for r � a. (4.11)

Once again, taking U0 = V0 = 0, W0 = ht, we have

1

r

∂

∂r

[

rh3 ∂p

∂r

]

= 12µW0 =⇒
∂p

∂r
=

6µW0r

h3
(4.12)

The integration can be done exactly, giving

p = pa −
3µaW0

h2
=⇒

∫ ∞

0

(p− pa)2πr dr = −
6µW0a

2

h
.

Note we have integrated to r =∞. By this we mean h0 � “∞”� a!
We can incorporate this is an equation of motion for the sphere, we find that, formally

it takes an infinite time to reach the table! In practice, balls can bounce because the large
pressures cause the sphere to deform.

Flows of thin films with a free surface: There are many examples of such flows –
for example, see Q1 on Problem sheet 4. We have ignored gravity on this sheet, as the
pressure generated are usually much larger than hydrostatic pressures. If gravity is the
driving force this must clearly be included in equations (4.5).

In conclusion, recall that these viscosity dominated thin layer flows can occur even
when the Reynolds number is large Re � 1 provided Re(h/l)

2 � 1. This might lead us
to wonder what happens in layers of thickness h when Re(h/l)

2 ' 1? This leads us in the
next chapter onto the important topic of boundary layers.
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