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Physiological background
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Physiological background

Arteries are observed to curve three-dimensionally.
Caro et al (1971, 1996) suggested this might give rise to
fluid dynamics less prone to the development of atheroma.

We concentrate today on the aortic arch over a range of
animal sizes.

Zabielski & Mestel (1998,2000) investigated effects of
arterial torsion using a helical model. We revisit and revise
this work.

Rigid walls, no branches, fully developed, Newtonian flow.

Bio Fluid Mechanics, TCC Lecture 18 – p.3



The aortic arch
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The aortic arch
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Really helical arteries – the umbilical cord

The umbilical cord is a good example of

a helical artery. See for example the

picture:

http://www.photographersdirect.com

/buyers/stockphoto.asp?imageid=67464
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The driving pressure gradient

Suitably non-dimensionalised, the down-pipe N-S equation
takes the form

α2∂v

∂t
+ u · ∇v = R +Rsα

3f(t) +∇2v + curvature terms

where α is the Womersley number α = (ω0a
2/ν)

1/2 and R
and Rs are the amplitudes of the steady and fluctuating
parts. The pulse shape f(t) is obtained from
measurements and is assumed to be exactly periodic, and
the same for all subjects.
For given geometry and pulse shape, the problem depends
on 3 parameters. We aim to use allometric arguments to
select suitable parameter values for numerical calculation.
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Canine pressure gradient
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v f(t)

Measured velocity profile and pressure gradient

from Parker (2000), used in isotropic model.
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Pressure gradient for elderly human

Data for Pressure and Pressure gradient from Parker (2007) used in anisotropic
calculations.
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An allometric model (isotropic)

Consider a class of geometrically similar animals,
characterised by a single length-scale, or equivalently, its
mass M . Assume quantities depend on M as a power law,
for example:

Aorta volume ∝M =⇒ Aorta radius a ∝M1/3

assuming aorta shape is the same for all sizes.

In fact, if we modify these scalings using empirical data
from Stahl (1968) and Pedley (1978) giving Q ∝M 0.81

rather than M0.75 we obtain the values (M in kg):

Rs = 84.8×M0.27, α2 = 57×M0.42, R = 1140×M .65

Pipe curvature and torsion independent of M .

These values, given in the following table, were used in the
numerical calculations of ZM2000
(Zabielski & Mestel J. Biomech. Eng. 122 (2000)):
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ω0 ∝M−1/4 =⇒ α =

(
ω0a

2

ν

)1/2

∝M5/24 'M0.21
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An allometric model (isotropic)

How does R scale with M?

The cardiac output is expected to scale as

Q ∝M3/4 ∝ πa2v =⇒ v ∝M1/12

For steady flow, at high Reynolds (Dean) number R, can
estimate the velocity scale

v ∝
ν

a
R2/3

which leads to

R ∝M5/8 = M0.625

In fact, if we modify these scalings using empirical data
from Stahl (1968) and Pedley (1978) giving Q ∝M 0.81

rather than M0.75 we obtain the values (M in kg):
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Pipe curvature and torsion independent of M .

These values, given in the following table, were used in the
numerical calculations of ZM2000
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An allometric model (isotropic)

How does Rs scale with M?
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unsteady pressure gradient ∼
∂v

∂t
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v′ ∝
αRs

a
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Scalings for isotropic aortas

M [kg] diameter in cm α (Womersley) R′ R′s

mouse 0.017 0.16 (0.07) 3.20 (1.5) 40.9 28.2
rat 0.6 0.52 (0.2) 6.78 (3.3) 410 73.8
ferret 1.5 0.71 (0.3) 8.22 (3.7) 741.6 94.6
rabbit 3 0.90 (0.34) 9.50 (4.0) 1161 114
cat 4 0.98 (0.4) 10.1 (4.4) 1398 123

10 1.33 12.24 2529 158
15 1.52 13.33 3287 176

dog 20 1.68 (1.56) 14.16 (13.1) 3959 190
30 1.92 15.42 5146 212
40 2.12 16.38 6198 230
50 2.28 17.16 7161 244
60 2.42 17.83 8056 256

man 75 2.62 (3) 18.70 (22.2) 9307 272
ox 500 4.92 (4) 27.84 (25.6) 31740 454
horse 850 5.87 (7.6) 31.12 (41.8) 44740 524
elephant 2000 7.81 (9) 37.25 (49.2) 77800 660

In brackets, experimental data for the proximal aorta from McDonald.
These values suggest altering the scaling law for aortic radius and Womersley number.
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Anisotropic model

Weinberg & Ethier (2007) and Greve et al (2007) suggest
that the aorta does not scale isotropically. Rather, its
radius a and length b may obey (West et al 1997)

a ∝M3/8 b ∝M1/4

This means the pipe curvature increases with size

δ ≡
a

b
∝M1/8

We will assume the pipe torsion increases at the same rate
so that the helical parameter

ε ∝M1/8

Note pipe intersects itself for δ > 1. (M > 30 tons.)

Peak velocity v′ is also observed to be independent of size
(about 1m/s) so

αRs

a
∝ v′ =⇒ Rs ∝M1/8 (M5/24 before)

High Dean number steady flow

v ∝
ν

a
R2/3 =⇒ R ∝M9/16 (M5/8 before)
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Anisotropic model

a ∝M3/8 b ∝M1/4 ε ∝M1/8

Cardiac output scaling as Q ∝M3/4 leads to a mean
velocity independent of size

v ∝M0

Peak velocity v′ is also observed to be independent of
size (about 1m/s) so
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R2/3 =⇒ R ∝M9/16 (M5/8 before)
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Anisotropic model

a ∝M3/8 b ∝M1/4 ε ∝M1/8

The Womersley number

α ∝ aω
1/2
0 ∝M3/8M−1/8 = M1/4 (M5/24 before)
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Scaling of Wall Shear Stress

Until fairly recently (Weinberg & Ethier 2007), experimental
physiologists believed that

the blood velocity, V , was independent of size

the wall shear stress, τ ∼ µV/L, was independent of
size.

These two statements are clearly incompatible with a
size-dependent length-scale! While it isn’t obvious whether
L should scale with a, a/α or some other boundary layer
thickness, it is mathematically obvious that τ decreases
with M if V is constant. The manner in which endothelial
(wall) cells respond to stress needs thus to be rethought.
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Helical blood flow

Laminar, incompressible flow is driven down a rigid
helical pipe of circular cross-section driven by a

measured, physiological pressure profile, assumed
time-periodic and the same shape for all animal sizes.

Helical symmetry is imposed on the velocity field.

Fully developed nonlinear solutions are found
numerically. These are usually time-periodic.
Problem depends on 5 parameters, chosen
allometrically as described before.

Bio Fluid Mechanics, TCC Lecture 18 – p.13



Helical symmetry

In terms of cylindrical polar coordinates (r, θ, z),

Helical pipe
εa = 1 b/a = 2.5

the helical symmetry direction H is given by

H = 1
h2 (−εreθ + ez) h = (1 + ε2r2)1/2

eθ and ez are unit vectors in the θ and z directions.
The constant ε measures the pitch of a given helical line.

H is a non-unit Beltrami field

∇×H = − 2ε
h2 H,

This Beltrami property is responsible
for genuinely three-dimensional behaviour.

A scalar function f is helically symmetric when

f = f(r, φ) φ = θ + εz

In the limits ε→ 0⇒ H→ ez ,
ε→∞⇒ hH → −eθ

so that helical symmetry simplifies to
two-dimensionality (ε = 0) and axisymmetry (ε→∞).
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Helical representation of the velocity field

Helically symmetric solenoidal velocity field:

u = H×∇Ψ + vH

The vorticity vector field ω = ∇× u

ω = H×∇(−v) + ξH where LΨ =
2ε

h2
v + ξ.

Navier-Stokes equations:

∂v

∂t
+

1

r
J(Ψ, v) = G(t) + ν(Lv +

2ε

h2
ξ)

∂ξ

∂t
+

(
−

2ε

h2

1

r
J(Ψ, v) +

1

r
J(Ψ, ξ) +

2ε2

h2
(ξ
∂Ψ

∂φ
+ v

∂v

∂φ
)

)
= ν(Lξ −

2ε

h2
(Lv +

2ε

h2
ξ))

G(t) is the imposed down-pipe pressure gradient, G = α−2R+Rsαf(t).

In this talk, G is assumed periodic with a measured physiological profile f(t).
The amplitudes R, Rs and frequency α2 are determined allometrically.
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Numerical solutions for isotropic scaling

The effect of the helical bend: The advantage of a 3-D bend can be seen from this
animation of the flow which would occur in a 3kg rabbit with a planar aortic bend:

In contrast the separation at the inside of a helical bend is more benign, even for a 60kg
man:

Animations: Ferret M = 1.5 Dog M = 20
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Numerical solutions for anisotropic case

General behaviour: At lower values of M the flow is
gentler, and has the same time period as the pressure.
During systole the flow can resemble a quasistatic
two-vortex Dean flow, but the single vortex helical flow
dominates during diastole. Back flow is greater than in the
isotropic case.

Animations:
rat, M = 0.6

rabbit, M = 3

dog, M = 20

man M = 75
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Wall shear distribution for a 20kg dog

(a)

Wall shear on the boundary of a helical bend ε = 1, b = 2.5.
Flow conditions as for the canine aortic arch with M = 20.
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Wall shear distribution for a 20kg dog

(b)

Wall shear on the boundary of a helical bend ε = 1, b = 2.5.
Flow conditions as for the canine aortic arch with M = 20.
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Wall shear distribution for a 20kg dog

(c)

Wall shear on the boundary of a helical bend ε = 1, b = 2.5.
Flow conditions as for the canine aortic arch with M = 20.

Bio Fluid Mechanics, TCC Lecture 18 – p.18



Wall shear distribution for a 20kg dog

(d)

Wall shear on the boundary of a helical bend ε = 1, b = 2.5.
Flow conditions as for the canine aortic arch with M = 20.
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Wall shear spatial distribution

The spatial distribution w(x) of the down-pipe shear.

rat 0.6kg

1.2 dog 20kg

man 50kg

1.0 Outer bend top inner bend bottom Outer bend

0.8

σH(x, t) = σH(t)w(x) + σ̃

where x is circumferential distance from the outer bend.

Bio Fluid Mechanics, TCC Lecture 18 – p.19



Wall shear timedependenceσ(t)
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Time dependence of the down-pipe component of the wall shear rate for ε = 1, b = 2.5
and M = 20kg. Compare the shape of the pressure gradient:
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Time dependence of Computed flux

Despite the complexity of the flows, the net flux v(t) is
similar in shape to the pressure, e.g. for rat M = 0.6
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Conclusions

Helical pipes have a more equitable wall shear, mainly
by avoiding the static separation point of the secondary
flow. Especially important for cross-pipe shear
component. The constant swirling keeps separated
structures close to the wall.

The isotropic model leads to more severe behaviour at
high M . Peak velocity increases slightly with M . For
moderate M , v′ < 1m/s. The anisotropic model
predicts the peak value well and has more backflow.

Effects of pipe torsion more important in relatively slow
diastolic phase. Lower values of Rs in anisotropic
model contribute to this.
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