
BioFluids Lecture 11: Bioconvection – what goes up must come down.

We ended last time considering how schools of fish and flocks of birds could benefit from the
presence of the others. In large numbers, microrganisms also can alter their environment,
whether consciously or not, by a process known as bio-convection. Essentially, they increase
the density of the surrounding fluid by swimming, thus causing it to convect. The resultant
large-scale fluid motion enhances mixing and can improve nutrient supply.

Bacteria and algae swim in response to a variety of stimuli. They may seek nutrients
or light, processes known respectively as chemotaxis and phyllotaxis. If they have sensitive
detection apparatus, they can arrange to swim up chemical gradients. However, many of
them are too small to detect changes in concentration (of oxygen, say) on the length-scales
of individual bacteria. Some are observed to swim for a little while in a straight line and
if conditions have not improved, alter their orientation and swim off in another direction.
Others arrange to swim upwards, which is usually towards the source of light and oxygen.
An excellent process to achieve this is known as gyrotaxis, which uses gravitational torque
to orientate the bacterium so that it faces upwards (essentially they are bottom-heavy.)
We will suppose there are a large number of organisms all trying to swim upwards. As
their density tends to be slightly higher than that of the ambient fluid, this can lead to an
unstable density profile, with resultant overturning of the fluid.

We shall treat the bacteria or other organisms as a continuum, with a concentration
(or number density) c(x, t). The local fluid density we suppose therefore to be ρ0(1+αc),
where ρ0 is the density of the pure fluid and α is a given positive constant. Under the
Boussinesq approximation, it is consistent to treat the fluid as incompressible,

∇ ∙ u = 0, (11.1)

while including in the Navier-Stokes equation a buoyancy term in the gravity direction
g = −gẑ

ρ0
Du

Dt
= −∇p+ ρ0(1 + αc)g + μ∇

2u. (11.2)

We require an evolution equation for c, which must reflect the fact that the bacteria are
conserved. We suppose that they are advected by the local fluid velocity and swim relative
to the fluid with velocity v. They may also be subject to random forcing or fluctuations,
we will represent these by a constant and isotropic diffusivity D, so that

∂c

∂t
= −∇ ∙ [c(v + u)] +D∇2c. (11.3)

In their seminal paper on bioconvection, Childress, Levandowsky & Spiegel (1975) allowed
for differing horizontal and vertical diffusion rates, but we won’t.

We assume that each organism attempts to swim vertically relative to the fluid. It
is possible that fluid motion will interfere with this intent, as local shear might alter the
orientation of each organism. We will consider this effect in more detail later, when we
allow for gyrotaxis. It gives rise to a completely different instability mechanism to the one
we investigate here.
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Neglecting gyrotactic effects, we assume that each organism swims vertically relative to
the fluid. Then there is a steady state where the concentration of bacteria is such that the
vertical swimming is balanced by diffusion, with no fluid motion, so that v = V ẑ

D
dc

dz
= cV or c = c0(z) = C0e

V z/D, (11.4)

if V is independent of c and z and c → 0 as z → −∞. More realistically, we could allow
V to decrease as c increases, but that complicates the algebra. If we wish to impose no
flux conditions ∂c

∂z
= 0 on lower and upper boundaries, then we cannot take V to be

constant and the equilibrium concentration c0(z) will require modification. If the bacteria
suspension occupies 0 < z < H , we could take, for example

V = V0z(H − z)/H
2 for constant V0 (11.5)

which would give us the equilibrium

c0(z) = C0 exp

[
V0z

2(3H − 2z)
6DH2

]

. (11.6)

Any equilibrium profile c0(z) can be supported by a vertical pressure distribution, p0(z).
We note that in an infinite layer, we can have a uniform concentration swimming upwards
at constant speed, without changing the local density at all. In a container of finite depth,
however, typical choices of V lead to a profile which increases with z and with the organisms
concentrated into a layer of thickness h. In this last example, h ∼ D/V0. If the associated
density increase exceeds some threshold, than we expect convection to occur.
If we non-dimensionalise length with respect to H, time with respect to H2/D and

the modified pressure (p+ ρ0gz) with respect to μD/L
2 we obtain

σ−1
Du

Dt
= −∇p+Rc ẑ+∇2u

Dc

Dt
= −

∂

∂z
(V c) +∇2c,





(11.7)

where the Schmidt number σ and the ‘Rayleigh number’ R are defined by

σ =
ν

D
and R =

gαC0H
3

νD
, (11.8)

where ν = μ/ρ0. We call R the Rayleigh number to draw a parallel with Rayleigh-Bénard
convection – in that context σ is usually called a Prandtl number. Experimental data
suggest that σ > 1 and R < 100.

We can now investigate stability of the equilibrium u = 0, c = c0(z), perturbing with
a mode ∝ ζ ≡ eilx+imyest. The horizontal wave number, k = (l2 +m2)1/2 is real, while
the growth rate s may in principle be complex. Formally, for some small ε we write

c = c0(z) + εc1(z)ζ, p = p0(z) + εp1(z)ζ, w = εW1(z)ζ, (11.9)
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where w is the z-component of velocity. We can eliminate the pressure and the other
velocity components by taking the curl of the curl of the Navier-Stokes equation and
evaluating the z-component. After some rearrangement of the concentration equation, we
obtain the coupled system

s

σ

(
d2

dz2
− k2

)

W1 −

(
d2

dz2
− k2

)2
W1 = k

2Rc1

sc1 +W1c
′
0(z)−

d

dz

[

c0
d

dz

(
c1

c0

)]

+ k2c1 = 0






(11.10)

On z = 0 and z = 1 we require c′1 = 0 and W1 = 0. If the walls are rigid then we must
have no slip (W ′1 = 0), but if they are free we should impose W

′′
1 = 0, no tangential stress.

Very often, say in a pond, the lower boundary is rigid but the upper is a free surface.

We now have 6 boundary conditions for the 6th order ODE-system (11.10), dependent
on the two parameters, σ and R. The solution obviously also depends on the equilibrium
concentration c0(z) – at the very least this introduces a 3rd parameter implicitly, namely
HV0/D in the above solutions.

For given values of the parameters, we aim to find the wave-numbers k which give rise
to growth rates s with a positive real part. In fact, if V is constant (or more generally if
V/D does not depend explicitly on z, but possibly on c) it can be shown that s is real. We
multiply the first equation in (11.10) by W ∗1 (the complex conjugate ofW1) and the second
by c∗1/c0 and integrate over the entire domain. Integrating by parts a few times we obtain
a relation between s, real integrals and boundary terms, which vanish for our boundary
conditions. It follows that s must be real. Just as with Sturm-Liouville equations it follows
that the eigenvalue problem can be rewritten in variational form if we so choose.

By analogy with thermal convection, we expect there to be a critical Rayleigh number,
above which we have instability. Dependence on the Schmidt number is not so critical,
nor the type of boundary (rigid or free).

Typical numerical results show indeed that there is a critical Rayleigh number Rc. At
this critical value, instability usually occurs for all small k (long waves; kc = 0). However,
for R > Rc the instability with greatest growth rate occurs at some finite value km, which
increases rapidly from zero as R increases to about 2Rc before levelling off at some finite
value. Thus the theory predicts that for a given concentration of organisms there will
be a minimum depth necessary for bioconvection to occur, and it also predicts that large
wavelength patterns may be visible just above critical. The first prediction is well borne
out by experiment, but very long wave patterns are not observed for slightly supercrit-
ical conditions, as predicted by the linear theory. The likely reason for this is that the
bifurcation at R = Rc is sub-critical, which would result in the nonlinear saturated states
differing substantially from the linear instability. This was shown in some unpublished
work by Spiegel and Childress.

The model we’ve looked at so far assumes that the organisms swim upwards even in
non-uniform fluid motion. This is unlikely to be true, however, because viscous torque
would cause them to rotate. So we shall now include gyrotaxis in the picture, which we
will see can render even a uniform collection of swimming organisms unstable.
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