
BioFluids Lecture 2: Introduction to animal locomotion

We begin with external biofluidmechanics, and consider fluid motion outside the body,
in particular how animals move through fluids. Let’s begin with some basic questions:
(a) What is locomotion? Typically, it is deliberate motion from A to B. We exclude

passive effects like Brownian motion or being blown by the wind. Marine animals which
alter their buoyancy do not technically swim. But a hovering bird or insect is flying.
(b) What is the difference between swimming and flying? Clearly, flight requires

support of the body against gravity. Swimming we will define to be self-driven motion of
a neutrally buoyant body through a fluid. Some sharks are denser than water, and would
naturally sink if they stopped moving they are really flying not swimming.
(c) What is the difference between fish and birds and ships and planes? Obviously

the fuel sources are different, but there is a more fundamental fluid mechanical difference.
Man-made devices are usually almost rigid, whereas animals generate their forward thrust
by moving their bodies around. Moving boundary problems are generally hard, and we
anticipate the need for some approximations in analysing the associated flows. A further
point is that the study of ships and planes is partly motivated by the desire to improve
design. The animal kingdom has evolved to the stage where it is very good at efficient
locomotion in its natural environment. We do not always know what it is trying to optimise,
but we can learn from it.

A basic summary of forces due to rigid motion through fluids.

When a (rigid) body moves relative to the surrounding fluid it does work for two reasons.
Firstly, it must move the fluid out of its way, imparting kinetic energy to the fluid. Secondly,
it must overcome the internal fluid friction, as measured by the viscous term. The relative
importance of these two effects can be estimated by looking at the Reynolds number
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Where we have estimated the size of the terms rather crudely, letting U0 be a typical
magnitude of |u| and L be a typical length-scale of variation. The whole nature of the
motion depends crucially on the size of this number. Flows which are small-scale, slow
and sticky have Low Reynolds Number, whereas motions which are large, fast and
momentum dominated have a High Reynolds Number. For swimming in water, R ∼
10−5 for a bacterium, R ∼ 0.1 for a protozoan, R ∼ 3 × 105 for a medium sized fish and
R ∼ 2 × 106 for a human. The idea of dynamic similarity comes from this: for the
fluid dynamics, only the value of R is important. A protozoan swimming in water is just
like a human swimming through syrup at 0.1m/s, apart from shape differences. Our fluid
dynamical knowledge leads us to expect vastly different propulsion mechanisms at high
and low Reynolds numbers.
Note that although we are interested in a body moving in stationary fluid, it is math-

ematically equivalent to consider the body at rest and the fluid moving past it. This is
because the Navier-Stokes equations are Galilean invariant. Note also that if the body
translates at some average velocity, then the average force it exerts on the fluid must be
zero. Of course, this doesn’t mean the body does no work. Overcoming viscous drag (at
low R) or imparting kinetic energy to the fluid (at high R) may involve considerable effort.
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Drag at Low Reynolds Number:

When the inertial term is much smaller than the viscous term, the nonlinear term can
be neglected. This linear problem is relatively easy to solve. A body moving with speed
U0 through a fluid when R� 1 experiences a drag force

D = 6πLμMU0 where M is a dimensionless geometrical tensor. (2.2)

If the direction of U0 is along a principle axis of M , then MU0 = αU0, and the drag
acts in the opposite direction to the velocity. For a sphere of radius L, it is found that
α = 1. α does not vary too much for other shapes. Neither does it matter very much
in which orientation the body lies; the drag force tends to be governed by the greatest
linear dimension of the body. This is in marked contrast to flows at higher R, where a
streamlined shape is very important. (Try pushing a boat sideways!) Despite this, we will
see that low Reynolds number swimming exploits the difference in resistance coefficients
for motion parallel and normal to flagella.
The crucial point is that the drag force varies linearly with the velocity. Note also

that the entire flow is reversible: if we replace u by −u, then D goes to −D. Note also a
general body will rotate in response to a net torque.

Drag at high Reynolds number:

The situation is much more complicated when R� 1. We would like then to ignore the
viscous term totally; however, it is important very close to solid boundaries in boundary
layers. Sometimes these thin layers separate leading to a marked increase in drag (when
flying, this is called stall). It is also possible for vortices to be shed, for the force to be
time-dependent and for the flow to be turbulent. At high Reynolds numbers, the drag on
a body moving with speed U0 is approximately quadratic in U0, and may be summarised

D = 1
2CD ρSU

2
0 where S is the cross-sectional area normal to u . (2.3)

CD is a dimensionless number known as the drag coefficient., which varies with both
shape and Reynolds number. In this case, for the drag to be small it is very important for
the shape to be streamlined and to present a small cross-section to the oncoming flow.
(Think of a sail, where large drag is desirable.)

Lift forces:

At high R also the total force may not be aligned with the velocity. (Imagine carrying a
large sheet of wood slightly inclined to a strong wind.) A large force normal to the velocity
can be generated, due to an asymmetric pressure distribution. This lift force, G, is usually

G = 1
2CL ρU

2
0W where W is the wing area (2.4)

and CL is the dimensionless lift coefficient. It is proportional to sin β where β is the
angle between wing and oncoming flow. This lift can balance gravity and enable flight.
It does however increase the drag force, by an amount known as the induced drag, DI .
The reasons for the induced drag are complex, and to do with the trailing vortices at the
wing tips. The total drag acting in the presence of lift is given by the sum of D and DI .
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Flows with moving boundaries: parameters and general comments

The above relations are useful background, but we are interested in non-rigid motion. Let
us assume the animal adopts a strategy for moving its surface which results in average
motion in a given direction. We will further assume that it repeats this strategy, so that
the flow is time-periodic, with frequency ω. We can then define another parameter, the
Strouhal number, St = ωL/U0, which gives an indication of how the boundary motion
relates to the net swimming speed. If the amplitude of boundary displacement is small
compared to the body size this would introduce an amplitude parameter also. For flows
where gravity is important, we may want to consider the Froude number, F = U20 /(gL).

The Reynolds number can vary by many orders of magnitude. At low Reynolds
number, the Strouhal number is usually in the 10-100, range, but for forward flight of
insects and birds St ' 0.3 ± 0.1 fairly uniformly. This suggests that the flapping rate
during flight has been optimised in some manner.
What kind of simple swimming motions are possible? Consider simple tail-wagging.

At high Reynolds number this simple motion drives fluid backwards, with a consequent
forward force on the body. (This is like oscillating the rudder on a yacht.) At low Reynolds
number however, no net forward motion occurs (see video), which is a consequence of

The Scallop Theorem: No time reversible sequence of boundary configurations can swim
at low R. This is more general than saying no time-reversible motion can swim, because
the rate at which the ‘forward’ stroke occurs can be different from the ‘return’ stroke. A
scallop is a rigid bivalve, which opens and closes by rotating its two halves about an axis.
Suppose the opening is slow and the closing is rapid. At R > O(1) this will drive a jet of
water backwards during the closing stroke, but while it opens, fluid is sucked in from all
directions. Nevertheless if R� 1 no net motion can occur. Time appears as a parameter
in the Stokes problem

∇p = μ∇2u, u = Ub(x, t) on the boundary, (2.5)

the speed of motion does not affect the argument. If we run the film backwards, we
still end up where we started, even if we run the camera slowly. The scallop theorem
is poorly named, as scallops do in fact swim with reversible motions, albeit at high R.
Furthermore, unlike jellyfish, which propel themselves in the expected direction, opposite
to that of an emitted water jet, the scallop actually swims in the direction of its open
end, due to geometric effects. The theorem merely states that scallop must open or close
quickly enough if they are to transport themselves.
It is important to note that a travelling wave is not time-reversible. This is a very

common method of propulsion over a wide range of Reynolds numbers. Over the next few
lectures we shall consider the cases of low and high R separately. There is a fairly clear
distinction between bacteria, spermatazoa and ciliates which swim at low R, the Stokesian
regime, and birds and fishes which live in the Eulerian regime at high R. Relatively few
creatures, small fishes, molluscs and insects, have to cope with both inertia and viscosity.
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