Estimating the efficient price from the order flow: a Brownian Cox process approach

Sylvain Delattre, Christian Y. Robert and Mathieu Rosenbaum

University Paris 7, University Lyon 1, University Paris 6

11 April 2013
Outline

1. Introduction and model
2. Estimation procedures
3. Elements of proof
4. One numerical example
Outline

1. Introduction and model
2. Estimation procedures
3. Elements of proof
4. One numerical example
What is the high frequency price?

Classical approach in mathematical finance

- Prices of basic products (futures, stocks, ...) are observed on the market.
- Their values are used in order to price complex derivatives.
- Options traders typically rebalance their portfolio once or a few times a day.
- So, derivatives pricing problems typically occur at the daily scale.
What is the high frequency price?

High frequency setting

- When working at the ultra high frequency scale, even pricing a basic product, that is assigning a price to it, becomes a challenging issue.
- Indeed, one has access to trades and quotes in the order book.
Example of order book

<table>
<thead>
<tr>
<th>MICHELIN</th>
<th>Heure</th>
<th>Prix</th>
<th>volume</th>
</tr>
</thead>
<tbody>
<tr>
<td>FR0000121261 (ML)</td>
<td>13:15:05</td>
<td>83.65</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>13:14:50</td>
<td>83.65</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>13:14:32</td>
<td>83.65</td>
<td>79</td>
</tr>
<tr>
<td></td>
<td>13:14:32</td>
<td>83.65</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>13:14:30</td>
<td>83.65</td>
<td>49</td>
</tr>
<tr>
<td></td>
<td>13:14:30</td>
<td>83.65</td>
<td>3951</td>
</tr>
<tr>
<td></td>
<td>13:13:18</td>
<td>83.65</td>
<td>520</td>
</tr>
<tr>
<td></td>
<td>13:13:18</td>
<td>83.65</td>
<td>507</td>
</tr>
<tr>
<td></td>
<td>13:13:18</td>
<td>83.65</td>
<td>680</td>
</tr>
<tr>
<td></td>
<td>13:13:18</td>
<td>83.65</td>
<td>232</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Demandes (Acheteurs - bid)</th>
<th>Offres (Vendeurs - ask)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb. ordres</td>
<td>Quantités</td>
</tr>
<tr>
<td>1</td>
<td>4 771</td>
</tr>
<tr>
<td>1</td>
<td>225</td>
</tr>
<tr>
<td>3</td>
<td>2 810</td>
</tr>
<tr>
<td>2</td>
<td>1 946</td>
</tr>
<tr>
<td>4</td>
<td>5 955</td>
</tr>
</tbody>
</table>

|Nb. ordres | 11 | 15 707 | 7 219 | 27 |
What is the high frequency price?

Different prices

- At a given time, many different notions of price can be defined for the same asset: last traded price, best bid price, best ask price, mid price, volume weighted average price, ...
- This multiplicity of prices is problematic for many market participants.
- For example, market making strategies or brokers optimal execution algorithms often require single prices of plain assets as inputs.
What is the high frequency price?

Pricing issues

- Choosing one definition or another for the price can sometimes lead to very significantly different outcomes for the strategies.
- This is for example the case when the tick value (the minimum price increment allowed on the market) is rather large.
- Indeed, this implies that the prices mentioned above differ in a non negligible way.
What is the high frequency price?

Efficient price

- In practice, high frequency market participants are not looking for the “fair” economic value of the asset.
- What they need is rather a price whose value at some given time summarizes in a suitable way the opinions of market participants at this time.
- This price is called **efficient price**.
- We aim at providing a statistical procedure in order to estimate this efficient price.
We focus on large tick assets and assume that the efficient price essentially lies inside the bid-ask spread.

We use the order flow and the fact that the price is where the volume is not.

We assume that the intensity of arrival of the limit order flow at the best bid (say) depends on the distance between the efficient price and the considered level.

If this distance is large, the intensity should be high and conversely.
Response function

- We assume the intensity can be written as an increasing deterministic function of this distance.
- This function is called the order flow response function.
- A crucial step before estimating the price is to estimate the response function in a non-parametric way.
- Then, this functional estimator is used in order to retrieve the efficient price.
- It is also possible to use the buy or sell market order flow. In that case, the intensity of the flow should be high when the distance is small.
- Indeed, in this situation, market takers are not loosing too much money when crossing the spread.
The model

- We assume the bid-ask spread is constant equal to one (tick).
- The efficient price P_t is simply given by $P_0 + \sigma W_t$, with P_0 uniformly distributed on $[p_0, p_0 + 1]$, with p_0 an integer.
- We assume that when a limit order is posted at time t at the best bid level, its price is given by $\lfloor P_t \rfloor$.
Let N_t be the total number of limit orders posted over $[0, t]$.

We assume that $(N_t)_{t \geq 0}$ is a Cox process with arrival intensity at time t given by

$$\mu h(Y_t),$$

with

$$Y_t = P_t - \lfloor P_t \rfloor = \{ P_t \}$$

and $\int_0^1 h(x)dx = 1$ (identifiability condition).

The limiting case where h is constant corresponds to orders arriving according to a standard Poisson process.
Asymptotic setting

- We observe the point process \((N_t)\) on \([0, T]\).
- We let \(T\) tend to infinity. It is also necessary to assume that \(\mu = \mu_T\) depends on \(T\).
- More precisely

\[
T^{5/2+\varepsilon} / \mu_T \to 0.
\]
Recall that if U is uniformly distributed on $[0, 1]$ and X is a real-valued random variable, which is independent of U then \(\{U + X\}\) is also uniformly distributed on $[0, 1]$.

We obtain that \((Y_t)\) is a stationary Markov process such that, almost surely,

$$
\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(Y_s) \, ds = \int_0^1 f(s) \, ds.
$$
Properties of the process \(Y_t \)

- \((Y_t)\) also enjoys a regenerative property.
- Let \(\nu_0 = 0, \nu_1 = \inf \{ t > 0 : P_t \in \mathbb{N} \} \) and for \(n \geq 2 \):
 \[
 \nu_n = \inf \{ t > \nu_{n-1} : P_t = P_{\nu_{n-1}} \pm 1 \}
 = \inf \{ t > \nu_{n-1} : W_t = W_{\nu_{n-1}} \pm 1/\sigma \}.
 \]
- The cycles \((Y_{t+\nu_n})_{0 \leq t < \nu_n+1-\nu_n}\) are independent and identically distributed for \(n \geq 1 \).
Properties of the process Y_t

Limiting behavior

- We get that almost surely

$$
\lim_{T \to +\infty} \frac{1}{T} \int_0^T f(Y_s) \, ds = \sigma^2 \mathbb{E} \left(\int_0^{\tau_1} f(\{\sigma W_t\}) \, dt \right).
$$

- In particular, this implies that

$$
\sigma^2 \mathbb{E} \left[\int_0^{\tau_1} f(\{\sigma W_t\}) \, dt \right] = \int_0^1 f(s) \, ds.
$$

- Furthermore,

$$
\sqrt{T} \left(\frac{1}{T} \int_0^T f(Y_t) \, dt - \int_0^1 f(s) \, ds \right) \xrightarrow{d} N(0, \sigma^2 \text{Var}[Z^f]).
$$
1 Introduction and model

2 Estimation procedures

3 Elements of proof

4 One numerical example

Mathieu Rosenbaum

Estimating the efficient price

18
Step 1

Estimation of μ_T

- Recall that the intensity of the point process is given by $\mu_T h(Y_t)$ with Y_t the fractional part of P_t.
- Before estimating h, we need to estimate μ_T.
- We have

$$\mathbb{E}\left[\frac{N_T}{\mu_T T}\right] = \mathbb{E}\left[\frac{1}{T} \int_0^T h(Y_t)dt\right] = \frac{1}{T} \int_0^T \mathbb{E}[h(Y_t)]dt = 1.$$
Proposition : Estimation of μ_T

We easily show that

$$\sqrt{T} \left(\frac{\hat{\mu}_T}{\mu_T} - 1 \right) \xrightarrow{d} N(0, \sigma^2 \text{Var}[Z^h]).$$
Let k_T be a known deterministic sequence of positive integers. Then define for $j = 1, \ldots, k_T$

$$\hat{\theta}_j = k_T \frac{N_j T/k_T - N_{(j-1)} T/k_T}{\hat{\mu}_T T} = \frac{k_T}{N_T} \left(N_j T/k_T - N_{(j-1)} T/k_T \right).$$

$\hat{\theta}_j$ is approximately equal to

$$\frac{1}{\mu_T T/k_T} \sum_{i=1}^{\lfloor \mu_T T/k_T \rfloor} \left(N_{(j-1)} T/k_T + i/\mu_T - N_{(j-1)} T/k_T + (i-1)/\mu_T \right).$$
Step 2

Estimation of h

Conditional on the path of (Y_t), the variables in the sum are independent and if T/k_T is small enough, they approximately follow a Poisson law with parameter $h(Y_{(j-1)T}/k_T)$.

Therefore, if moreover $\mu_T T/k_T$ is sufficiently large, one can expect that $\hat{\theta}_j$ is close to $h(Y_{(j-1)T}/k_T)$.

We assume that k_T is chosen so that for some $p > 0$, as T tends to infinity,

$$T^{p+1/2}/k_T^{p/2} \to 0, \quad k_T T^{1/2}/\mu_T \to 0.$$
Estimation of h

- The $\hat{\theta}_j$ introduced above are k_T estimators of quantities of the form $h(u_j)$.
- However, we do not have access to the values of the u_j!
- Nevertheless, we know that they are uniformly distributed on $[0, 1]$. We therefore rank the $\hat{\theta}_j : \hat{\theta}(1) \leq \hat{\theta}(2) \leq \ldots \leq \hat{\theta}(k_T)$.
- For $u \in [0, 1)$, we define the estimator of $h(u)$ the following way:

$$\hat{h}(u) = \hat{\theta}(\lfloor uk_T \rfloor + 1).$$
Then, the estimator of h^{-1} is naturally defined by the right continuous generalized inverse of \hat{h}:

$$\hat{h}^{-1}(t) = \frac{1}{k_T} \sum_{j=1}^{k_T} \mathbb{I}\{\hat{\theta}_j \leq t\}.$$
We have the two following convergences in law in the Skorohod space:

\[
\sqrt{T} \left(\hat{h}^{-1}(\cdot) - h^{-1}(\cdot) \right) \overset{d}{\to} \sigma G(\cdot) - \frac{(\cdot)}{h'(h^{-1}(\cdot))} \int_0^{h(1^{-})} \sigma G(v) dv,
\]

\[
\sqrt{T} \left(\hat{h}(\cdot) - h(\cdot) \right) \overset{d}{\to} -h'(\cdot) \sigma G(h(\cdot)) + h(\cdot) \int_0^{h(1^{-})} \sigma G(v) dv,
\]

where \(G(\cdot) \) is a continuous centered Gaussian process with covariance function which is explicitly defined.
Theorem

Let

$$h(Y_t) = k_T \frac{N_t - N_{t-T/k_T}}{\hat{\mu}_T T}.$$

and

$$\hat{Y}_t = \hat{h}^{-1}(h(Y_t)).$$

We have

$$\sqrt{T}(\hat{Y}_t - Y_t) \xrightarrow{d} \sigma G(h(Y_t)),$$

with G independent of Y_t.

Mathieu Rosenbaum
Estimating the efficient price 26
1. Introduction and model
2. Estimation procedures
3. Elements of proof
4. One numerical example
Oracle quantities

- Recall that

\[\hat{\theta}_j = k_T \frac{N_j T / k_T - N_{(j-1)} T / k_T}{N_T} \]

- We set

\[\theta_j = k_T \frac{N_j T / k_T - N_{(j-1)} T / k_T}{\mu T T} \]

and \(\hat{h}_e(u) = \theta(\lfloor uk_T \rfloor + 1) \).

- We have

\[\hat{h}_e^{-1}(\theta) = \frac{1}{k_T} \sum_{j=1}^{k_T} \mathbb{I}\{\theta_j \leq \theta\} \]
The following proposition is a key element for the proof of the theorem.

Proposition

We have

\[
\sqrt{T} \left(\hat{h}_e^{-1}(\cdot) - h^{-1}(\cdot) \right) \xrightarrow{d} \sigma^2 G(\cdot) \quad \text{in } D[0, h(1^-)],
\]

where \(G(\cdot) \) is a centered Gaussian process with explicit covariance function.
Proof of the proposition

Decomposition

- We write \(\hat{h}_e^{-1}(t) - h^{-1}(t) = T_1 + T_2 + T_3 \), with

\[
T_1 = \frac{1}{kT} \sum_{j=1}^{kT} \mathbb{I}\{\theta_j \leq t\} - \frac{1}{kT} \sum_{j=1}^{kT} \mathbb{I}\{\frac{kT}{j} \int_{(j-1)T/kT}^j h(Y_u) du \leq t\},
\]

\[
T_2 = \frac{1}{kT} \sum_{j=1}^{kT} \mathbb{I}\{\frac{kT}{j} \int_{(j-1)T/kT}^j h(Y_u) du \leq t\} - \frac{1}{T} \sum_{j=1}^{kT} \int_{(j-1)T/kT}^{jT/kT} \mathbb{I}\{h(Y_u) \leq t\} \, du,
\]

\[
T_3 = \frac{1}{T} \int_0^T \mathbb{I}\{h(Y_u) \leq t\} \, du - h^{-1}(t).
\]

- The last term is treated thanks to the previous CLT and the two others are shown to be negligible.
This gives

$$\sqrt{T}(\hat{h}_e^{-1}(t) - h^{-1}(t)) \xrightarrow{d} N (0, \sigma^2 \text{Var}[Z_e(t)])$$

where

$$Z_e(t) = \int_0^{\tau_1} \left(\mathbb{I}\{W_s < 0, h(1+\sigma W_s) \leq t\} + \mathbb{I}\{W_s > 0, h(\sigma W_s) \leq t\} - h^{-1}(t) \right) ds.$$
Proof of the proposition

Finite dimensional convergence

- We obtain a multidimensional CLT in the same way.
- We have that \(Z_e(t) \) is equal to

\[
\int_{-1/\sigma}^{1/\sigma} \left(\mathbb{I}_{\{u<0, h(1+\sigma u) \leq t\}} + \mathbb{I}_{\{u>0, h(\sigma u) \leq t\}} - h^{-1}(t) \right) L_{-1/\sigma, 1/\sigma}(u) \, du,
\]

where \(L_{-1/\sigma, 1/\sigma}(u) \) is the local time stopped at the first exit time from \((-1/\sigma, 1/\sigma)\).

- This enables to show that \(\mathbb{E}[Z_e(t)] = 0 \) and to compute explicitly the limiting covariance function \(\mathbb{E}[Z_e(t_1)Z_e(t_2)] \).
Proof of the proposition

Tightness

It remains to prove the tightness of

$$\alpha_T(t) = \sqrt{T} \left(\frac{1}{T} \int_0^T \mathbb{1}_{\{h(Y_s) \leq t\}} ds - h^{-1}(t) \right).$$

This is done showing that for some $p > 0$ and $p_1 > 1$ and all $0 \leq t_1, t_2 < h(1^-)$:

$$\mathbb{E}[|\alpha_T(t_1) - \alpha_T(t_2)|^p] \leq c|t_1 - t_2|^{p_1}. $$
Proof of the proposition

Tightness

- We need to consider terms of the form:

\[Y_i(t_1, t_2) = \frac{1}{\sqrt{T}} \left(\int_{\nu_i-1}^{\nu_i} \mathbb{I}_{t_1 < h(Y_t) \leq t_2} dt - \frac{1}{\sigma^2} (h^{-1}(t_2) - h^{-1}(t_1)) \right). \]

- Using a local time version of BDG inequality, we show that the following inequality enables to prove tightness

\[
\mathbb{E} \left[\left(Y_i(t_1, t_2) \right)^2 \right] \leq T^{-1} \mathbb{E} \left[\left(\int_{\nu_i-1}^{\nu_i} \mathbb{I}_{t_1 < h(Y_t) \leq t_2} dt \right)^2 \right] \\
\leq cT^{-1} \|t_2 - t_1\|^2 \mathbb{E}[(L^*)^2],
\]

with \(L^* = \sup_{u \in [-1/\sigma, 1/\sigma]} (L_{-1/\sigma, 1/\sigma}(u)) \).
From the proposition to the theorem

Composition and inverse

- The theorems are deduced from the property.
- Indeed, we have

\[
\sqrt{T} \left(\hat{h}_e(\cdot) - h(\cdot) \right) \overset{d}{\to} -\sigma h'(\cdot) G(h(\cdot)),
\]

\[
\sqrt{T} \left(\int_0^1 \hat{h}_e(u)du - 1 \right) \overset{d}{\to} -\sigma \int_0^{h(1)} G(v)dv.
\]

- Then, remark that

\[
\hat{h}^{-1}(t) = \hat{h}_e^{-1}(t\hat{\mu}_T/\mu_T) \text{ and } \hat{\mu}_T/\mu_T = \int_0^1 \hat{h}_e^{-1}(u)du.
\]
Composition and inverse

We write \(\sqrt{T} (\hat{h}^{-1}(\cdot) - h^{-1}(\cdot)) \) as

\[
\begin{align*}
&= \sqrt{T} \left(\hat{h}_e^{-1}(\cdot \left(\hat{\mu}_T / \mu_T \right)) - h^{-1}(\cdot \left(\hat{\mu}_T / \mu_T \right)) \right) \\
&\quad + \sqrt{T} \left(h^{-1}(\cdot \left(\hat{\mu}_T / \mu_T \right)) - h^{-1}(\cdot) \right),
\end{align*}
\]

From the preceding proposition together with the functional delta method and the inverse map theorem, we get the results.
Outline

1. Introduction and model
2. Estimation procedures
3. Elements of proof
4. One numerical example
One experiment on real data

Setting

- Asset: Bund contract on the EUREX market.
- T=5 hours (8 am - 13 am).
- Windows: 30 seconds.
- We compute h^{-1}.
The h function is a mapping between the arrival of limit orders at the best bid (or the best ask) and $[0,1]$. Estimation can be done over 1 day, with estimates of N arrival every second over the past and future 30 seconds (for instance).