Introduction

Algorithmic Differentiation for PV greeks: Adjoint Differentiation in a nutshell

Adjoint Differentiation for exotic instruments with the Monte Carlo regression

Discussion on necessity of the regression differentiation

Numerical experiments: XVA for a Bermudan swaption
Greeks calculation is complicated and time consuming operations in the financial software. Here we concentrate on the model Greeks: price/XVA change w.r.t. the change of the model parameters.

Our goal is the “Rolls-Royce” of the computational finance:

- compute greeks of multiple XVA’s (CVA, DVA, FVA, COLVA etc) with a general collateral (CSA)
- for an instrument set containing all kinds of instruments:
 - ”forward” (e.g. swaps, European options, Barrier options)
 - ”backward” (e.g. Bermudan or American options)
- using MC methods including regressions
Methods for model greeks

- Bump-and-reprice (BnR)
- Payoff differentiation (the Adjoint Differentiation (AD) is a part of it)
- Likelihood (notably, Malliavin techniques, powerful but very bespoke)

In general, the \textit{quality} of the BnR derivatives are equivalent to the payoff differentiation ones. The \textit{speed} depends on multiple factors:

- Number of market bumps w.r.t. model parameters
- Dependence of states on parameters: analytical dependence, local parameters etc.
A Traditional Payoff Differentiation goes path-by-path; it can be either direct (towards the result) or adjoint (back from the result):

- direct differentiation is efficient when the number of results (outputs) is more than the number of parameters (input)
- adjoint differentiation (AD) is efficient in the opposite case (more natural in finance)

The AD was brought into mathematical finance by Glasserman-Gilles in 2006 and widely spread after that (Capriotti, Andreasen and many others):

- The AD coding is considered as complicated
- It requires a lot of memory to write the tape
- However, its "theoretical" speed (number of multiplications) is impressive: a speed of derivatives calculation over a set of parameters does not depend of the number of parameters but is only 4-10 times slower than the function itself
AD logic

Using a simple example below we show why the AD speed is so high.

Introduce:

- Model parameters: N_θ-dimensional vector
 \[\theta = \{\theta_1, \ldots, \theta_{N_\theta}\} \]

- Model states: N_X dimensional Markovian process in a model measure and expectation $\mathbb{E}[$·$]$
 \[X(t) = \{X_1(t), \ldots, X_{N_X}(t)\} \]

depending on the parameters $X(t) = X(t, \theta)$ defined on a discrete set of timesteps by general Markov discretization scheme on a set of N_t simulation dates $\{t_i\}_{i=1}^{N_t}$
\[X(t_{i+1}) = G(t_i, X(t_i), Z_i, \theta), \]
where Z_i is, for example, Gaussian random variable. The origin is at t_0.
Consider a general path-dependent payoff

\[Q(X) = Q(X(t_1), \ldots, X(t_{N_t})) \]

and its value \(V(\theta) = \mathbb{E}[Q(X(\theta))] \) calculated using the Monte Carlo (MC) simulations

\[V(\theta) \approx \frac{1}{N_p} \sum_{p=1}^{N_p} Q(X(\theta)[p]), \]

where \(N_p \) is the number of MC paths and \(X(t)[p] \) is the state realization of the \(p \)th path.

The goal is to calculate the price derivative over all model parameters \(\{\theta_n\} \):

\[\frac{\partial V(\theta)}{\partial \theta} = \mathbb{E} \left[\frac{\partial Q(X)}{\partial \theta} \right], \]

where the payoff derivative can be expressed via the chain rule:

\[\frac{\partial Q(X)}{\partial \theta} = \sum_{k=1}^{K} \frac{\partial Q(X)}{\partial X(t_k)} \frac{\partial X(t_k)}{\partial \theta}. \]
Below, we calculate the underlying derivatives $\partial X(t_k)[p]/\partial \theta$ path-by-path and for notational brevity, we will omit the path index.

The AD calculation is based on the **backward substitution** of the simulation step into the payoff:

$$Q(X(t_1), \ldots, X(t_{N_t})) =$$
$$= Q(X(t_1), \ldots, X(t_{N_t-1}), X(t_{N_t}, G(t_{N_t-1}, X(t_{N_t-1}), Z_{N_t-1}, \theta)))$$
$$= \ldots$$
$$= Q_i(X(t_1), \ldots, X(t_i); Z_i, \ldots, Z_{N_t-1}; \theta),$$

where we have denoted by Q_i the payoff value for which we have backwardly substituted the states until its latest direct dependence on $X(t_i)$.

In other words, we have calculated the payoff *conditional* on the time t_i, substituting all $X(t_j)$ from the very end ($j = t_{N_t}$) back to $j = i + 1$.
we have obtained explicit dependence on the parameters thanks to the substitution while some dependence upon θ can still be hidden in $X(t_i)$. We will also use the notation

$$Q_i(X(t_1), \ldots, X(t_i); Z_i, \ldots, Z_{N-1}; \theta) = Q(X(t_1), \ldots, X(t_N)) \big|_{t_i},$$

to highlight this.

Our goal → find the payoff dependence on the states for which we have substituted all of the θ dependencies:

$$Q_0(Z_1, \ldots, Z_{N-1}; \theta) = Q(X(t_1), \ldots, X(t_N)) \big|_{t_0}.$$

and its derivatives over the parameters $\partial Q_0 / \partial \theta$.

→ Numerix

Algorithmic differentiation for callable exotics: PV and XVA
The recursive relationship between Q_i and Q_{i+1},

\[
Q_i(X(t_1), \ldots, X(t_i); Z_i, \ldots, Z_{N_t-1}; \theta) = Q_i(X(t_1), \ldots, X(t_{i-1}), G(t_{i-1}, X(t_{i-1}), Z_{i-1}, \theta); Z_i, \ldots, Z_{N-1}; \theta) = Q_{i-1}(X(t_1), \ldots, X(t_{i-1}); Z_{i-1}, \ldots, Z_{N-1}; \theta),
\]

is the key to expressing the payoff derivatives \textit{backwardly}:

\[
\frac{\partial Q_{i-1}}{\partial \theta} = \frac{\partial Q_i}{\partial \theta} + \frac{\partial Q_i}{\partial X(t_i)} \frac{\partial G(t_{i-1}, X(t_{i-1}), Z_{i-1}, \theta)}{\partial \theta} \quad \text{and} \quad \frac{\partial Q_{i-1}}{\partial X(t_{i-1})} = \frac{\partial Q_i}{\partial X(t_i)} + \frac{\partial Q_i}{\partial X(t_i)} \frac{\partial G(t_{i-1}, X(t_{i-1}), Z_{i-1}, \theta)}{\partial X(t_{i-1})}
\]

We call these two equations the \textit{AD recursion}.
The AD is a reverse scheme w.r.t. the calculation process → it requires storage of the following information during the model simulation and instrument pricing

- **Simulation info** (simulation tape in the AD slang):
 derivatives of the discretization function:

 \[
 \frac{\partial G(t_i, X(t_i), Z_i, \theta)}{\partial \theta},
 \]

 \((N_\theta \times N_X\) matrix per path-per time step)

 \[
 \frac{\partial G(t_i, X(t_i), Z_i, \theta)}{\partial X(t_i)}
 \]

 \((N_X \times N_X\) matrix per path-per time step)

- **Instrument info** (instrument tape)
 partial derivatives of the payoff,

 \[
 \frac{\partial Q_i}{\partial X(t_{i-1})}
 \]

 which is a vector of length \(N_X\) per path per time step.
For any fixed payoff Q, AD requires the reverse propagation. Having calculated and stored the *tapes* we go backward in time, calculating the derivatives.

Cost of the AD operations:

- The derivative calculations $\frac{\partial Q_i}{\partial X(t_i)}$ cost N_X^2 multiplications per path and per timestep.
- The derivative calculations $\frac{\partial Q_i}{\partial \theta}$ cost $O(1)N_X$ multiplications per path and per timestep for *all* parameters.

Why so few?

Indeed, in practice the parameters (e.g. IR time-dependent vols and yield curves) are time-dependent. Thus, the discretization function $G(t_i, X(t_i), Z_i, \theta)$ often depends only on a limited number of parameters (corresponding to the timestep $[t_i, t_{i+1}]$) and not on the whole set of them.

Remark. Our example is a ”manual” AD; there exists softwares permitting an automatic AD (with different degree of efficiency)
The speed of greeks calculation becomes important (XVA hedging for exotics portfolios, initial margin, FRTB etc.)

The regression (least-square MC, AMC) is the key numerical method for exotic deals; it is one of the most complex and time-consuming numerical methods.

It introduces path interdependencies that compromise the path-by-path valuation: the AD becomes difficult. That is why people often avoid the regression if they can.

In AIKMM (2016) we have found a universal method that can be applied uniformly across all exotic deals for both price and XVA greeks with full regression mechanism.

In this presentation we avoid ”boring” algo details; instead, we will illustrate the underlying mathematical logic on example of a Bermudan swaption.
Callable instruments

- Callable instruments pricing procedure is encoded in so called pricing script.
- Its main component is a *continuation value* (CV). We denote it as $V(t)$ at time t.
- The CV is a certain function of the model state variables at time t. Financially, $V(t)$ is a *hold* value: it is the price of holding an option at time t with all possible payments and exercises taking place thereafter.
- A simple CV example is a leg with a single unit payment at time T. More complicated examples include a swap value or a swaption holding value. For a European option the CV is a discounted conditional expectation of the payoff.
Consider a Bermudan swaption giving the right to enter into a swap on exercise dates T_i.

The swap pays a *generalized cashflow* c_j at date T_j (for simplicity coinciding with the exercise dates). The cashflows can be, for example, fix or floating rates. The cashflows are known analytically as functions of states and parameters.

Let $V(t)$ and $S(t)$ denote the CVs of the swaption and the swap.

The swaption’s backward pricing is performed using two repeated steps encoded in a pricing script.
The first step: transformations at T_j

\[
V(T_j^-) = \max(V(T_j), S(T_j))
\]
\[
S(T_j^-) = S(T_j) + c_j
\]

where $T^- = T - \varepsilon$

The second step: propagation (the discounted conditional expectation) between the instrument dates:

\[
S(t) = N(t) \mathbb{E} \left[\frac{S(T)}{N(T)} \middle| \mathcal{F}_t \right] \quad \text{and} \quad V(t) = N(t) \mathbb{E} \left[\frac{V(T)}{N(T)} \middle| \mathcal{F}_t \right]
\]

where $N(t)$ is the model numeraire.

Often, the CV's $S(t)$ and $V(t)$ are certain function of the model states (driving factors) $X(t)$.

A general instrument contains a set of CVs V_j that are transformed by means of $+,$ $-,$ $\times, /,$ $\max,$ \bstep etc.
Regression

In practice, for conditional expectations, we use the MC regression (a.k.a. least-squares MC, AMC). Each CV is presented as a vector of path values $V(t) = \{V(t)[p]\}_{p=1}^{N_p}$.

Fix two times t_1 and t_2 and denote $V(t_i) = V^{(i)}$ and $X(t_1) = X$. For the numerical calculation of the conditional expectation

$$V^{(1)}(x) = \mathbb{E} \left[V^{(2)} \big| X = x \right],$$

we need to fix basis functions $\{\phi_n(X)\}_{n=1}^{N_b}$ and determine coefficients β_n which minimize the expectation

$$\chi^2 = \mathbb{E} \left[\left(V^{(2)} - \sum_n \beta_n \phi_n(X) \right)^2 \right],$$

Remark. For simplicity we ignore numeraire in the expectations (See A^2 (2016) for complete formulas.)
The unconditional expectation χ^2 is calculated over the MC paths:

$$\chi^2 \simeq \frac{1}{N_p} \sum_{p=1}^{N_p} \left(V^{(2)}[p] - \sum_n \beta_n \phi_n(X[p]) \right)^2.$$

Abusing notations we denote by $V^{(1)}[p]$ the pth path of results for the MC regression on our basis $\phi_n(X)$. Such stochastic variable is an approximation to the exact conditional expectation. The errors come from two sources:

- Incomplete basis (the main error)
- MC statistical error

In all of the regression-based methods, the choice of the basis is the key. Below, we treat all of our equations in the MC sense assuming that
1) averages are MC sums $\mathbb{E}[X] = (1/N_p) \sum_p X[p]$
2) conditional averages are results of the corresponding regressions.
Minimizing χ^2 yields the set of equations which can be easily solved:

$$V^{(1)}[p] = \frac{1}{N_p} \sum_{nm,p'} \phi_n(x[p]) C_{nm}^{-1} \phi_m(x[p']) V^{(2)}[p'].$$

where

$$C_{nm} = \mathbb{E} [\phi_n(X) \phi_m(X)]$$

is the basis function covariance matrix.

The linear operation $V^{(2)} \to V^{(1)}$ “mixes the paths”, i.e. a value $V^{(1)}[p]$ will depend on all the paths of $V^{(2)}[p']$ and $X[p']$.

This leads to derivatives of the regression containing cross-terms (result at path p depend on states for all paths)

\[\downarrow\]
\[\frac{\partial V^{(1)}[p]}{\partial V^{(2)}[p']} = \frac{1}{N_p} \sum_{nm} \phi_n(x[p]) C_{nm}^{-1} \phi_m(x[p']) \]

\[\frac{\partial V^{(1)}[p]}{\partial X[p']} = \delta_{pp'} V^{(1)'}[p] + \frac{1}{N_p} \sum_{nm} \phi_n(X[p]) C_{nm}^{-1} \]

\[\times \left\{ \phi'_m(X[p']) (V^{(2)}[p'] - V^{(1)}[p']) - \phi_m(X[p']) V^{(1)'}[p'] \right\} \]

where \(V^{(1)'}[p] \) is the derivative of the regression result

\[V^{(1)'}[p] = \sum_n \beta_n \phi'_n(X[p]) \]

and \(\phi'_n(x) \) is the derivative of \(\phi_n(x) \) over its argument.

Remark. The derivative matrices size is large \((N_p \times N_p)\) and they heavily mix the paths. However, their rank is equal to the number of basis functions \(N_b \), which is often much smaller than \(N_p \).
So far we have treated the *price greeks*. Now we present a more complicated subject of the *XVA greeks*.

This will require so called future values (FV) which we denote with small letters \(v(t) \). Their main difference with the CV’s is that the FV takes into account possible exercises before the time \(t \) whereas the CV does not.

For a general collateral, a general XVA is defined on a set of observation dates \(\{s_i\} \)

\[
XVA = \sum_i \mathbb{E} \left[\frac{F_i(u(s_1), \cdots, u(s_i))}{N(s_i)} \right] w_i
\]

where deterministic function \(F_i(u_1, \cdots, u_i) \) is a generalized portfolio exposure and \(w_i \) are some weights.

Example. One-sided CSA
\[
CVA = \sum_{s_i} \mathbb{E} \left[\frac{v(s_i)^+}{N(s_i)} \right] w_i
\]
Example: Bermudan swaption

The swap pays cashflows c_j at a date T_j for $j = 1, \ldots, M$ → the swaption PV is built with payments subjected to the exercise conditions

$$V = \mathbb{E} \left[\sum_{j=1}^{M} \frac{\mathcal{I}(T_j)c_j}{N(T_j)} \right]$$

where the global exercise indicator indicator $\mathcal{I}(T_j)$ equals one if we have entered into the swap before the payment date T_j and zero otherwise.

The global exercise indicator can be computed given the local indicators

$$C_i = 1_{S(T_i) > V(T_i)}$$

defined on exercise dates T_i in terms of the swaption/swap continuation values.
The global exercise indicator for $T_j \leq t < T_{j+1}$ reads

$$I(t) = 1 - \prod_{i=1}^{j} (1 - C_i).$$

Now we can define the swaption future value (FV) for a given date t: it is a conditional expectation of all payments on and after t

$$v(t) = N(t) \mathbb{E} \left[\sum_{j=1, T_j \geq t}^{M} \frac{I(T_j) c_j}{N(T_j)} \bigg| \mathcal{F}_t \right],$$

One can prove that the swaption FV can be expressed through the CV’s and global exercise indicators

$$v(t) = V(t)(1 - I(t)) + S(t)I(t)$$

In spite of its complicated and "bespoke" structure there is an algorithmic way to calculate it (AIM (2015)).
Do we always need derivatives of the regression?

Quite often we know analytical dependence of the cashflows c_k from the parameters

$$\frac{\partial c_k[p]}{\partial \theta} \bigg|_{t_0}$$

Question: can we use the derivatives of the cashflows to calculate XVA’s or need to differentiate the results of the regression?
Consider first our Bermudan where the exercise indicators form a surface in the state space for each exercise date. This surface is optimal for the Bermudan swaption price

\[V = \mathbb{E} \left[\sum_{j=1}^{M} I_{j-1} \frac{c_j}{N(T_j)} \right] \]

i.e. an infinitesimal ”bump” of the indicators as functions of parameters leads to zero

\[\mathbb{E} \left[\sum_{j=1}^{M} \frac{\partial I_{j-1}}{\partial \theta} \frac{c_j}{N(T_j)} \right] = 0. \]

This immediately gives us the PV Greek

\[\frac{\partial}{\partial \theta} V = \mathbb{E} \left[\sum_{j=1}^{M} I(T_j) \frac{\partial}{\partial \theta} \left(\frac{c_j}{N(T_j)} \right) \right] \]

which requires only differentiation of the cashflows and the numeraire.
Thus, the optimal exercise instruments will not depend on the exercise derivatives and the differentiation of the conditional exercises can be avoided.

This rule can be extended to other (not path-dependent) backward\(^1\) instruments.

To prove it we associate with any CV \(V(t) \) its “noisy derivative” \(\partial \tilde{V}(t)/\partial \theta \) such that its conditional expectation equals to the exact derivative of the CV

\[
\mathbb{E} \left[\frac{\partial \tilde{V}(t)}{\partial \theta} \middle| \mathcal{F}_t \right] = \frac{\partial V(t)}{\partial \theta}
\]

Remark. The noisy derivative would be exact if we were differentiating the regression (but we want to avoid it).

\(^1\)Or written in the backward way, like barriers etc.
When the CV is modified, the noisy derivatives will be modified according to the differentiation rules, e.g.,

\[V(T_k^-) = \max(V(T_k), S(T_k)) \]

\[\downarrow \]

\[\frac{\partial \tilde{V}(T^-_j)}{\partial \theta} = (1 - C_j) \frac{\partial \tilde{V}(T_j)}{\partial \theta} + C_j \frac{\partial \tilde{S}(T_j)}{\partial \theta} \]

or

\[S(T_k^-) = S(T_k) + c_k \Rightarrow \frac{\partial \tilde{S}(T^-_k)}{\partial \theta} = \frac{\partial \tilde{S}(T_k)}{\partial \theta} + \frac{\partial c_k}{\partial \theta} , \]

where \(\frac{\partial c_k}{\partial \theta} \) is a real derivative of the analytically available cashflows.
Conditional expectations for the CVs induce a simple discounting for noisy derivatives, i.e.,

\[\frac{\partial \tilde{V}(t^-)}{\partial \theta} = \frac{\partial \tilde{V}(T^-)}{\partial \theta} \frac{N(t)}{N(T)} + V(T^-) \frac{\partial}{\partial \theta} \left(\frac{N(t)}{N(T)} \right). \]

At the origin, an expectation of the noisy derivative gives the correct CV derivative

\[\frac{\partial V(0)}{\partial \theta} = \mathbb{E} \left[\frac{\partial \tilde{V}(0)}{\partial \theta} \right]. \]
Limitations of the approach above are related with different time combinations of the CV’s, i.e. path-dependence of the instrument.

Example. Consider a barrier condition of a CV \(V(T_2) \) at time \(T_2 \) when a CV trigger \(U(T_1) \) at inferior time \(T_1 < T_2 \) is positive:

\[
V(T_2^-) = V(T_2) 1_{U(T_1) \geq 0}.
\]

The resulting noisy derivative \(\partial \tilde{V}(T_2^-)/\partial \theta \) will *not* satisfy

\[
\mathbb{E} \left[\frac{\partial \tilde{V}(T_2^-)}{\partial \theta} \bigg| \mathcal{F}_{T_2} \right] \neq \frac{\partial V(T_2^-)}{\partial \theta},
\]

if the derivative of the barrier is noisy.

Conclusion on PV greeks. For any non path-dependent backward instrument, one can avoid the differentiation of the conditional expectations.
Consider a simple credit valuation adjustment (CVA) with a deterministic hazard rate $\lambda(t)$ and a deterministic collateral $C(t)$.

Suppose that the only element of portfolio is our Bermudan.

The total instrument price

$$\hat{V} = \mathbb{E} \left[\sum_{j=1}^{M} I_{j-1} \frac{c_j}{N(T_j)} \right] - \mathbb{E} \left[\int_0^T dt \tilde{\lambda}(t) \frac{(v(t) - C(t))^+}{N(t)} \right]$$

where $v(t)$ is a future value (FV) of the Bermudan and $\tilde{\lambda}(t) = \lambda(t) e^{-\int_0^t ds \lambda(s)}$.

The last term is called CVA.
The FV $v(t)$ is path-dependent \Rightarrow one cannot find its noisy derivative having information about the cashflow derivatives. However, as shown in AIKMM (2016), we can transform each fixed time t term

$$\mathbb{E} \left[\frac{(v(t) - C(t))^+}{N(t)} \right]$$

into a backward instrument (effectively making the instrument non-path-dependent) and get rid of the differentiation of conditional expectations.

The computational cost is high: for the CVA we get

$\#$ of CVA discretization time-steps \times $\#$ of exercises of extra regressions.

Such procedure may be much slower than the regression differentiation!
Now consider a portfolio of vanillas such that its noisy derivative exists and based on the cashflow derivatives, i.e.

\[
\mathbb{E} \left[\frac{\partial \tilde{v}(t)}{\partial \theta} \Bigg| \mathcal{F}_t \right] = \frac{\partial v(t)}{\partial \theta}.
\]

As we have seen it is only possible when the exercise conditions are absent (e.g. swaps) or depend on the model states (e.g. barriers).

Let us establish conditions on the collateral when the cashflow derivatives are sufficient for the XVA Greeks.
Start with a CVA containing simple averages\(^2\) for some function \(f(v)\) corresponding to the collateral as a deterministic function of the portfolio value (e.g. \(f(v) = (v - C(v))^+\)) ⇒

\[
\frac{\partial \mathbb{E}[f(v(t))]}{\partial \theta} = \mathbb{E} \left[\frac{\partial f(v(t))}{\partial \theta} \right] = \mathbb{E} \left[f'(v(t)) \frac{\partial v(t)}{\partial \theta} \right] \\
= \mathbb{E} \left[f'(v(t)) \frac{\partial \tilde{v}(t)}{\partial \theta} \right]
\]

due to the noisy derivative definition.

Conclusion. A Greek for a single time average of the vanilla portfolio FV depends only on cashflow derivatives

\[
\frac{\partial \mathbb{E}[f(v(t))]}{\partial \theta} = \mathbb{E} \left[f'(v(t)) \frac{\partial q(t)}{\partial \theta} \right]
\]

This property was first presented in Andreasen (2014) for \(f(x) = x^+\).

\(^2\)We have removed the numeraire for simplicity.
For a multi-time dependence of a general XVA

$$\mathbb{E} \left[f(v(t_1), \cdots, v(t_n)) \right]$$

corresponding to a general collateral with non-zero minimum transfer amount and threshold such property is not valid.

However, one can employ a branching diffusion as was first suggested in Andreasen (2014) for $f = (v(t_{n-1}) - v(t_n))^+$. If we have a general path-dependence for the XVA, the branching logic becomes cumbersome (n re-simulations for timestep t_n), slow and hard to control on the script level.

Thus, for a general XVA with a general collateral one should differentiate the conditional expectation.
Conditions when the cashflow derivatives are not sufficient (or it is too slow to avoid differentiation of conditional expectation) to calculate XVA Greeks:

- The portfolio contains Bermudan/American options which are exercised in the usual risk-free way
- The collateral is generally dependent on multiple time horizons

For other cases, mainly representing vanilla portfolios with a simple collateral, it is sufficient to use cashflow derivatives for XVA Greeks.
Numerical experiments

- We numerically demonstrate the efficiency of the backward algorithmic differentiation using the HW1F model with constant parameters: the volatility is 2%, the reversion is 5%, and the rate is 2%.
- The exotic instrument in hand is a 10-year Bermudan ATM swaption with coinciding quarterly fixing and exercise dates from 0.25 years to 10.25 years. The payment dates are shifted forward by 0.25 years.
- The swaption price is 0.107 for a unit notional.
- We use 12 observation dates per year: 126 in total. This results in 252 regressions both for swap and swaption.
We cover two experiments: the first one is related to the PV Greeks while the second one with the XVA Greeks. We calculate sensitivities to different buckets of the volatility (Vega) and forward rates of the yield curve (Delta).

We bump these parameters either on the annually spaced intervals (11 buckets) or on the quarterly intervals (43 buckets).

For both experiments we perform Monte-Carlo simulation 5,000 high-quality, low-discrepancy paths with 126 time steps. The conditional expectation is calculated with regression on a set of 17 smooth basis functions similar to Carriere (1996).

We present timing of our new method, alternative to the AD, called Backward Differentiation (BD) vs. bump-and-reprice (BnR) and acceleration results (greeks profiles as well as convergence analysis can be found in AIKMM (2016))
Table: Time (sec) for Pricing Greeks with regression differentiation

<table>
<thead>
<tr>
<th># of Vols</th>
<th># of Rates</th>
<th>Pricing</th>
<th>BD</th>
<th>BnR</th>
<th>BnR/BD</th>
<th>BD/Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>0.7</td>
<td>1.3</td>
<td>15.3</td>
<td>12.2</td>
<td>1.8</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>0.7</td>
<td>1.5</td>
<td>36.9</td>
<td>24.4</td>
<td>2.2</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>0.7</td>
<td>2.5</td>
<td>59.2</td>
<td>23.5</td>
<td>3.7</td>
</tr>
</tbody>
</table>

Table: Time (sec) for Pricing Greeks without regression differentiation

<table>
<thead>
<tr>
<th># of Vols</th>
<th># of Rates</th>
<th>Pricing</th>
<th>BD</th>
<th>BnR</th>
<th>BnR/BD</th>
<th>BD/Pricing</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>0.7</td>
<td>0.8</td>
<td>15.2</td>
<td>20.2</td>
<td>1.1</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>0.7</td>
<td>0.8</td>
<td>38.3</td>
<td>46.5</td>
<td>1.2</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>0.7</td>
<td>1.0</td>
<td>58.6</td>
<td>57.2</td>
<td>1.5</td>
</tr>
</tbody>
</table>

Table: Time (sec) for XVA Greeks with regression differentiation

<table>
<thead>
<tr>
<th># of Vols</th>
<th># of Rates</th>
<th>XVA</th>
<th>BD</th>
<th>BnR</th>
<th>BnR/BD</th>
<th>BD/XVA</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>11</td>
<td>1.8</td>
<td>3.9</td>
<td>39.4</td>
<td>10.1</td>
<td>2.2</td>
</tr>
<tr>
<td>11</td>
<td>43</td>
<td>1.8</td>
<td>6.8</td>
<td>97.1</td>
<td>14.3</td>
<td>3.8</td>
</tr>
<tr>
<td>43</td>
<td>43</td>
<td>1.8</td>
<td>11</td>
<td>155.1</td>
<td>14.1</td>
<td>6.1</td>
</tr>
</tbody>
</table>

Table: Time (sec) for XVA Greeks without regression differentiation
Observation

According to the AD rule of thumb (the AD is 4-10 times slower than the pricing) the BD performs very decently:

- Pricing greeks
 up to over 20 times faster than the BnR with regression differentiation, and almost up to 60 times faster without it.

- XVA greeks
 up to over 15 times faster than the BnR

Antonov, A., Algorithmic Differentiation for Callable Exotics (September 2016), SSRN preprint

