STATISTICAL METHODS IN FINANCE ASSIGNMENT 3 – SOLUTIONS

JACK JACQUIER MSC MATHEMATICS AND FINANCE, IMPERIAL COLLEGE LONDON

Solution (Exercise 1: Confidence intervals).

(i) Since each X_i is distributed as $\mathcal{N}(\mu, \sigma^2)$, then the confidence interval of level α is given by (see the lecture notes)

$$\left[\overline{X}_n - \frac{\sigma}{\sqrt{n}}q_{1-\alpha/2}, \overline{X}_n + \frac{\sigma}{\sqrt{n}}q_{1-\alpha/2}\right] = \left[\frac{b}{n} - \frac{\sigma}{\sqrt{n}}q_{1-\alpha/2}, \frac{b}{n} + \frac{\sigma}{\sqrt{n}}q_{1-\alpha/2}\right].$$

(ii) See notebook. The interval for $\sigma = 20\%$ is

[9.912, 10.088].

Solution (Exercise 2: Neyman-Pearson). See Lecture notes for the detailed solution.

Solution (Exercise 3: Hypothesis testing 1).

(1) Consider the case n = 2, and recall that X_i is an Exponential random variable with parameter $\lambda_i > 0$ if its probability density function reads

$$f_{X_i}(x) = \lambda_i \mathrm{e}^{-\lambda_i x} \mathbf{1}_{\{x \ge 0\}}.$$

The density of the sum $X_1 + X_2$ corresponds to a convolution and reads, if $\lambda_1 \neq \lambda_2$

$$f_{X_1+X_2}(x) = \int_{\mathbb{R}} f_{X_1}(z) f_{X_2}(x-z) dz$$

= $\lambda_1 \lambda_2 \int_0^x e^{-\lambda_1 z} e^{-\lambda_2 (x-z)} dz$
= $\lambda_1 \lambda_2 e^{-\lambda_2 x} \int_0^x e^{(\lambda_2 - \lambda_1) z} dz$
= $\frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} e^{-\lambda_2 x} \left(e^{(\lambda_2 - \lambda_1) x} - 1 \right)$
= $\frac{\lambda_1 \lambda_2}{\lambda_1 - \lambda_2} \left(e^{-\lambda_1 x} - e^{-\lambda_2 x} \right).$

Date: December 4, 2019.

In the case where $\lambda_1 = \lambda_2$, an analogous computation yields

$$f_{X_1+X_2}(x) = \int_{\mathbb{R}} f_{X_1}(z) f_{X_2}(x-z) dz$$
$$= \lambda^2 \int_0^x e^{-\lambda z} e^{-\lambda(x-z)} dz$$
$$= \lambda^2 \int_0^x e^{-\lambda x} dz = \lambda^2 x e^{-\lambda x}$$

We can then proceed by recursion and show that the sum $\sum_{i=1}^{n} X_i$ follows a Gamma distribution with parameters n and λ .

(2) The joint density $\mathbf{X} = (X_1, \ldots, X_n)$, in turn, is equal to

$$f(\boldsymbol{x},\lambda) = \lambda^n \exp\left\{-\lambda \sum_{i=1}^n x_i\right\}, \quad \text{for any } \boldsymbol{x} = (x_1,\ldots,x_n) \in \mathbb{R}^n.$$

(3) We can base our test on the statistics

$$T := \frac{f(\boldsymbol{X}, \lambda_1)}{f(\boldsymbol{x}, \lambda_0)} = \left(\frac{\lambda_1}{\lambda_0}\right)^n \exp\left\{-(\lambda_1 - \lambda_0) \sum_{i=1}^n X_i\right\}.$$

Consider the case where $\lambda_0 < \lambda_1$ (a symmetric analysis can be carried out otherwise). The statistic T is a decreasing function of $S_n := \sum_{i=1}^n X_i$, so that $T \ge c$ if and only if $S_n \le c'$. We can choose c' such that

$$\mathbb{P}_{\lambda_0}\left[S_n \le c'\right] = \alpha$$

Under the null hypothesis, S_n is Gamma distributed, and we can therefore compute c' directly, for each λ_0 and each α using the quantiles of this distribution.

Solution (Exercise 4: Hypothesis testing 2).

(1) The joint density of X can be written as

$$f(\boldsymbol{x},\theta) = \frac{1}{\theta^n} \mathbb{1}_{\max\{x_1,\dots,x_n\} \le \theta}.$$

This follows directly from the definition of joint distributions.

(2) We assume here that $\theta_1 < \theta_0$. We can construct a test statistic of the form

$$T = \frac{f(\boldsymbol{X}, \theta_1)}{f(\boldsymbol{X}, \theta_0)} = \left(\frac{\theta_0}{\theta_1}\right)^n \mathbf{1}_{\max\{\boldsymbol{X}_1, \dots, \boldsymbol{X}_n\} \le \theta_1}.$$

T can only take two values, zero or $(\theta_0/\theta_1)^n$. The test therefore rejects the null hypothesis when $\max\{\mathbf{X}_1,\ldots,\mathbf{X}_n\} \leq \theta_1$ with level

$$\alpha = \mathbb{P}_{\theta_0} \left[\max\{ \boldsymbol{X}_1, \dots, \boldsymbol{X}_n \} \leq \theta_1 \right] = \left(\frac{\theta_0}{\theta_1} \right)^n,$$

and the power of the test reads

$$\mathbb{P}_{\theta_1}\left[\max\{\boldsymbol{X}_1,\ldots,\boldsymbol{X}_n\}\leq\theta_1\right]=1.$$