STATISTICAL METHODS IN FINANCE, ASSIGNMENT 3

JACK JACQUIER MSC MATHEMATICS AND FINANCE, IMPERIAL COLLEGE LONDON

Exercise 1 (Confidence interval). Let X_1, \ldots, X_n denote a random sample from a Gaussian random distribution with unknown mean μ and variance σ^2 . Assume that observations yield $\sum_{i=1}^n x_i = b$.

- (i) For any $\alpha \in (0, 1)$ determine the confidence interval for μ .
- (ii) Taking $\alpha = 5\%$, n = 20 and b = 200, plot the confidence interval as a function of σ . What are the values for $\sigma = 25\%$?

Exercise 2 (Neyman-Pearson). [Exercise 25 in the Lecture notes]

Consider $\mathcal{F} = {\mathcal{N}(\mu, \theta^2), \theta > 0}$, with $\mu \in \mathbb{R}$ known, and the hypotheses $\Theta_0 = (0, \sigma_0]$ and $\Theta_1 = (\sigma_0, +\infty)$, for some $\sigma_0 > 0$. Analyse the test defined by

$$\mathcal{R} := \left\{ rac{\mathcal{L}_{ heta}(\mathcal{X}_n)}{\mathcal{L}_{\sigma_0}(\mathcal{X}_n)} > c
ight\},$$

for some constant c > 0 to be determined, where \mathcal{L} denote as usual the likelihood function.

Exercise 3 (Hypothesis testing 1). Consider an iid sample X_1, \ldots, X_n distributed as an Exponential random variable with parameter $\lambda > 0$, and consider the following test:

$$\mathcal{H}_0: \lambda = \lambda_0 \qquad \text{vs} \qquad \mathcal{H}_1: \lambda = \lambda_1,$$

for some $\lambda_0, \lambda_1 > 0$ and some level $\alpha \in (0, 1)$.

- (1) Determine the distribution of $\sum_{i=1}^{n} X_i$.
- (2) Determine the joint distribution of (X_1, \ldots, X_n) .
- (3) Using Neyman-Pearson's lemma, determine the optimal level c^* .

Exercise 4 (Hypothesis testing 2). Consider an iid sample X_1, \ldots, X_n distributed as a Uniform random variable on $[0, \theta]$ and consider the test

$$\mathcal{H}_0: \theta = \theta_0 \qquad \text{vs} \qquad \mathcal{H}_1: \theta = \theta_1$$

for some $\theta_0, \theta_1 > 0$ and some level $\alpha \in (0, 1)$.

⁽i) Determine the joint distribution of (X_1, \ldots, X_n) .

Date: November 10, 2019.

- (ii) In the setting of Neyman-Pearson's lemma, determine the optimal level c^* as well as the power of the test. What do you conclude?
- (iii) Consider now a rejection region of the form $\mathcal{R}_k := \{\max\{X_1, \ldots, X_n\} \leq k\}$ for some k. Determine the optimal value of k and the power of the test. Can we conclude that this test is the most powerful for some level?