STATISTICAL METHODS IN FINANCE, ASSIGNMENT 2

DR JACK JACQUIER MSC MATHEMATICS AND FINANCE, IMPERIAL COLLEGE LONDON

Exercise 1 (Performance of estimators). We consider the statistical model $\mathcal{F} = \{\mathcal{N}(\mu, \sigma^2), \sigma^2 > 0\}$, for some fixed known $\mu \in \mathbb{R}$. The goal of this exercise is to determine an optimal (in some sense) estimator of the second moment σ^2 . Consider a given iid sequence $(X_i)_{i=1,...,n}$, sampled from $\mathcal{N}(\mu, \sigma^2)$, define, for any $\alpha_n > 0$, the estimator $\hat{\theta}_n$ as

$$\widehat{\theta}_n := \alpha_n \sum_{i=1}^n \left(X_i - \overline{X} \right)^2,$$

where $\overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$ denotes the empirical mean of the sample.

- (i) For which values of α_n is the sequence $(\hat{\theta}_n)_{n \in \mathbb{N}}$ consistent?
- (ii) By considering the quadratic error

$$R_n\left(\widehat{ heta}_n, heta
ight) := \mathbb{E}\left[\left|\widehat{ heta}_n - heta
ight|^2
ight],$$

determine the value of α_n providing the most efficient estimator.

(iii) Consider now a different loss function, namely the so-called Stein's loss function

$$L\left(\widehat{ heta}_n, heta
ight) := rac{\widehat{ heta}_n}{ heta} - 1 - \log\left(rac{\widehat{ heta}_n}{ heta}
ight).$$

Find the value of α_n minimising $L\left(\widehat{\theta}_n, \theta\right)$. How does this estimator compare to the previous one?

Exercise 2 (Method of moments). We consider the model $Z = c + e^X$, where $X \sim \mathcal{N}(\mu, \sigma^2)$.

- (i) Compute $\mathbb{E}[Z]$, $\mathbb{E}[Z^2]$ and $\mathbb{E}[Z^3]$.
- (ii) Deduce a Method of Moments estimator for the triplet (c, μ, σ^2) .

Date: October 26, 2019.

Exercise 3 (Degenerate Likelihood). Consider the function

(0.1)
$$f(x) = \frac{1}{6} \left(\frac{\mathbf{1}_{(0,1]}(|x|)}{\sqrt{|x|}} + \frac{\mathbf{1}_{(1,\infty)}(|x|)}{x^2} \right).$$

Show that f is a genuine density function on \mathbb{R} . Consider now the family $(f_{\theta})_{\theta \in \mathbb{R}}$ obtained by translation $f_{\theta}(x) := f(x - \theta)$ for all $x \neq \theta$, which corresponds to the common distribution of an iid sample (X_1, \ldots, X_n) .

(i) Compute the log-likelihood function, and discuss the existence of any maximum likelihood estimator.

- (ii) What about an estimator obtained by the method of moments?
- (iii) Compute the cdf corresponding to f in (0.1) and show that the median is null.
- (iv) By translation, determine an estimator for θ .

Exercise 4 (Maximum Likelihood). Let $\theta \in (0, 1)$ be the unknown parameter and consider the random variable X satisfying, for any integer n,

$$\mathbb{P}_{\theta}(X=n) = (n+1)(1-\theta)^2 \theta^n.$$

(i) Show that, for any $\theta \in (0, 1)$,

$$\mathbb{E}[X] = \frac{2\theta}{1-\theta}$$
 and $\mathbb{V}[X] = \frac{2\theta}{(1-\theta)^2}$.

- (ii) Give a method of moment estimator $\hat{\theta}_n$ for θ given an iid sample $\mathcal{X} = (X_1, \dots, X_n)$.
- (iii) Is the maximum likelihood estimator of θ given the sample \mathcal{X} well defined?
- (iv) Check whether $\hat{\theta}_n$ is consistent and compute its limiting distribution when n tends to infinity.