STATISTICAL METHODS IN FINANCE, ASSIGNMENT 1

JACK JACQUIER
MSC MATHEMATICS AND FINANCE, IMPERIAL COLLEGE LONDON

Exercise 1 (Skewness and kurtosis). For a given random variable X on the real line, with mean $\mu \in \mathbb{R}$ and variance $\sigma^{2}>0$, recall (see the lecture notes) that the skewness \mathcal{S} and kurtosis κ are defined as

$$
\mathcal{S}:=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{3}\right] \quad \text { and } \quad \kappa:=\mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^{4}\right]
$$

The skewness describes the asymmetry of the distribution, whereas the kurtosis is a measure of its fatness. We usually speak of the excess kurtosis, though, defined as $\kappa_{+}:=\kappa-3$.
(i) Using Hölder's inequality in the notes, prove Lyapunov's inequality, namely that

$$
\mathbb{E}\left[|X|^{p}\right] \leq \mathbb{E}\left[|X|^{q}\right]^{p / q}
$$

for all $0<p<q$ for which both sides of the inequality are finite. Deduce that $\kappa_{+} \geq-2$.
(ii) Compute \mathcal{S} and κ for $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
(iii) Compute \mathcal{S} and κ for the Uniform random variable on $[a, b]$.
(iv) Compute \mathcal{S} and κ for the Exponential random variable with intensity $\lambda>0$, and density

$$
f(x)=\partial_{x} \mathbb{P}[X \leq x]=\lambda \mathrm{e}^{-\lambda x}, \quad \text { for } x \geq 0
$$

(v) A distribution with $\kappa_{+}=0$ is called mesokurtic. One with $\kappa_{+}>0$ is leptokurtic, and platykurtic if $\kappa_{+}<0$.

- Check the origin and meaning of the Greek words meso, lepto, platy, kurtos.
- Let X represent daily logarithmic returns of some data. Using the IPython notebooks, find leptokurtic, platykurtic, or close to mesokurtic examples, and for which $\mathcal{S}>0$ and $\mathcal{S}<0$.

Exercise 2 (Convergence and Central Limit Theorem). Consider an iid sequence $\left(X_{i}\right)_{i=1, \ldots, n}$ with common law a Poisson distribution with parameter $\lambda>0$, that is such that

$$
\mathbb{P}\left[X_{1}=k\right]=\frac{\lambda^{k} \mathrm{e}^{-\lambda}}{k!}, \quad \text { for } k=0,1,2, \ldots
$$

(i) Compute $\mathbb{E}\left[X_{1}\right]$ and $\mathbb{V}\left[X_{1}\right]$.
(ii) Show that the the empirical average S_{n} converges in probability to λ as n tends to infinity, where

$$
S_{n}:=\frac{1}{n} \sum_{i=1}^{n} X_{i}, \quad \text { for } n \geq 1
$$

(iii) Define $T_{n}:=\exp \left\{-M_{n}\right\}$, and show that $\left(T_{n}\right)_{n \geq 1}$ converges in probability to $\mathrm{e}^{-\lambda}$ as n tends to infinity.
(iv) Using the Central Limit Theorem, determine the limiting distribution of $\left(T_{n}\right)_{n \geq 1}$.

Date: October 13, 2019.

Exercise 3 (Convergence of random variables). We consider a sequence $\left(X_{n}\right)_{n}$ of random variables on \mathbb{R}.
(i) Recall the Borel-Cantelli lemma: for a sequence $\left(A_{n}\right)_{n \geq 1}$ of events in some given probability space, if $\sum_{n \geq 1} \mathbb{P}\left(A_{n}\right)$ is finite, then $\mathbb{P}\left(\lim \sup _{n \uparrow \infty} A_{n}\right)=0$, e.g. the probability that infinitely many events occur is null. Here, the limsup is defined for sequences of events as

$$
\limsup _{n \uparrow \infty} A_{n}:=\cap_{n \geq 1} \cup_{p \geq n} A_{k}
$$

Consider the case where $X_{n}=1$ with probability $1 / n$ and zero otherwise. Using the Borel-Cantelli lemma, show that the sequence $\left(X_{n}\right)_{n}$ converges in probability but not almost surely.
(ii) Show that convergence in probability implies convergence in distribution. You may want to prove first that for any one-dimensional random variables X and Y and any $x \in \mathbb{R}, \varepsilon>0$, we have

$$
\mathbb{P}(Y \leq x) \leq \mathbb{P}(X \leq x+\varepsilon)+\mathbb{P}(|Y-X|>\varepsilon)
$$

(iii) Show that converges in distribution to a constant implies convergence in probability holds. You may want to use the following result: the sequence $\left(X_{n}\right)$ converges in distribution to X if and only if

$$
\underset{n \uparrow \infty}{\limsup } \mathbb{P}\left(X_{n} \in C\right) \leq \mathbb{P}(X \in C) \quad \text { holds for any closed set } C \text {. }
$$

Exercise 4 (Joint distributions). The two questions below are independent.
(i) Let X_{1} and X_{2} two independent $\mathcal{N}(0,1)$ random variables on \mathbb{R}, and, for some $\rho \in[-1,1], \mu_{1}, \mu_{2} \in \mathbb{R}$ and $\sigma_{2}, \sigma_{2}>0$, define

$$
Y_{1}:=\mu_{1}+\sigma_{1}\left(\rho X_{2}+\sqrt{1-\rho^{2}} X_{1}\right) \quad \text { and } \quad Y_{2}:=\mu_{2}+\sigma_{2} X_{2}
$$

Determine the joint distribution of $\left(Y_{1}, Y_{2}\right)$, the marginal distribution of Y_{1} and Y_{2} as well as the conditional distributions $Y_{1} \mid Y_{2}$ and $Y_{2} \mid Y_{1}$. What is the correlation between Y_{1} and Y_{2} ?
(ii) Let U_{1} and U_{2} denote two independent random variables with Uniform distributions on $[0,1]$, and define

$$
\begin{aligned}
& X_{1}:=\sqrt{-2 \log \left(U_{1}\right)} \cos \left(2 \pi U_{2}\right) \\
& X_{2}:=\sqrt{-2 \log \left(U_{1}\right)} \sin \left(2 \pi U_{2}\right)
\end{aligned}
$$

Determine the joint distribution of $\left(X_{1}, X_{2}\right)$.

Exercise 5 (Log-normal distribution). The two questions below are independent. Consider the standard Gaussian distribution $X \sim \mathcal{N}(0,1)$, with density

$$
f(x)=\frac{1}{\sqrt{2 \pi}} \exp \left\{-\frac{x^{2}}{2}\right\}, \quad \text { for all } x \in \mathbb{R}
$$

(i) Compute $\mathbb{E}[X], \mathbb{V}[X]$ and $\mathbb{E}\left[\mathrm{e}^{u X}\right]$ for all $u \in \mathbb{R}$ such that the expectation is well defined.
(ii) Define $Y:=\exp \{X\}$. Compute its density, expectation, variance and moment generating function.
(iii) Does Y have a symmetric distribution? Compute its skewness to confirm your guess.

