STATISTICAL METHODS IN FINANCE, ASSIGNMENT 1

JACK JACQUIER MSC MATHEMATICS AND FINANCE, IMPERIAL COLLEGE LONDON

Exercise 1 (Skewness and kurtosis). For a given random variable X on the real line, with mean $\mu \in \mathbb{R}$ and variance $\sigma^2 > 0$, recall (see the lecture notes) that the skewness S and kurtosis κ are defined as

$$S := \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^3\right]$$
 and $\kappa := \mathbb{E}\left[\left(\frac{X-\mu}{\sigma}\right)^4\right].$

The skewness describes the asymmetry of the distribution, whereas the kurtosis is a measure of its fatness. We usually speak of the excess kurtosis, though, defined as $\kappa_+ := \kappa - 3$.

(i) Using Hölder's inequality in the notes, prove Lyapunov's inequality, namely that

$$\mathbb{E}\left[|X|^{p}\right] \leq \mathbb{E}\left[|X|^{q}\right]^{p/q},$$

for all $0 for which both sides of the inequality are finite. Deduce that <math>\kappa_+ \ge -2$.

- (ii) Compute S and κ for $\mathcal{N}(\mu, \sigma^2)$.
- (iii) Compute S and κ for the Uniform random variable on [a, b].
- (iv) Compute S and κ for the Exponential random variable with intensity $\lambda > 0$, and density

$$f(x) = \partial_x \mathbb{P}[X \le x] = \lambda e^{-\lambda x}, \quad \text{for } x \ge 0.$$

- (v) A distribution with $\kappa_{+} = 0$ is called mesokurtic. One with $\kappa_{+} > 0$ is leptokurtic, and platykurtic if $\kappa_{+} < 0$.
 - Check the origin and meaning of the Greek words meso, lepto, platy, kurtos.
 - Let X represent daily logarithmic returns of some data. Using the IPython notebooks, find leptokurtic, platykurtic, or close to mesokurtic examples, and for which S > 0 and S < 0.

Exercise 2 (Convergence and Central Limit Theorem). Consider an iid sequence $(X_i)_{i=1,...,n}$ with common law a Poisson distribution with parameter $\lambda > 0$, that is such that

$$\mathbb{P}[X_1 = k] = \frac{\lambda^k \mathrm{e}^{-\lambda}}{k!}, \quad \text{for } k = 0, 1, 2, \dots$$

- (i) Compute $\mathbb{E}[X_1]$ and $\mathbb{V}[X_1]$.
- (ii) Show that the the empirical average S_n converges in probability to λ as n tends to infinity, where

$$S_n := \frac{1}{n} \sum_{i=1}^n X_i, \quad \text{for } n \ge 1.$$

(iii) Define $T_n := \exp\{-M_n\}$, and show that $(T_n)_{n \ge 1}$ converges in probability to $e^{-\lambda}$ as n tends to infinity.

(iv) Using the Central Limit Theorem, determine the limiting distribution of $(T_n)_{n>1}$.

Date: October 13, 2019.

Exercise 3 (Convergence of random variables). We consider a sequence $(X_n)_n$ of random variables on \mathbb{R} .

 (i) Recall the Borel-Cantelli lemma: for a sequence (A_n)_{n≥1} of events in some given probability space, if ∑_{n≥1} P(A_n) is finite, then P(lim sup_{n↑∞} A_n) = 0, e.g. the probability that infinitely many events occur is null. Here, the lim sup is defined for sequences of events as

$$\limsup_{n \uparrow \infty} A_n := \bigcap_{n \ge 1} \bigcup_{p \ge n} A_k,$$

Consider the case where $X_n = 1$ with probability 1/n and zero otherwise. Using the Borel-Cantelli lemma, show that the sequence $(X_n)_n$ converges in probability but not almost surely.

(ii) Show that convergence in probability implies convergence in distribution. You may want to prove first that for any one-dimensional random variables X and Y and any $x \in \mathbb{R}$, $\varepsilon > 0$, we have

$$\mathbb{P}(Y \le x) \le \mathbb{P}(X \le x + \varepsilon) + \mathbb{P}(|Y - X| > \varepsilon).$$

(iii) Show that converges in distribution to a constant implies convergence in probability holds. You may want to use the following result: the sequence (X_n) converges in distribution to X if and only if

$$\limsup_{n\uparrow\infty} \mathbb{P}(X_n \in C) \le \mathbb{P}(X \in C) \quad holds for any closed set C.$$

Exercise 4 (Joint distributions). The two questions below are independent.

(i) Let X_1 and X_2 two independent $\mathcal{N}(0,1)$ random variables on \mathbb{R} , and, for some $\rho \in [-1,1]$, $\mu_1, \mu_2 \in \mathbb{R}$ and $\sigma_2, \sigma_2 > 0$, define

$$Y_1 := \mu_1 + \sigma_1 \left(\rho X_2 + \sqrt{1 - \rho^2} X_1 \right)$$
 and $Y_2 := \mu_2 + \sigma_2 X_2$

Determine the joint distribution of (Y_1, Y_2) , the marginal distribution of Y_1 and Y_2 as well as the conditional distributions $Y_1|Y_2$ and $Y_2|Y_1$. What is the correlation between Y_1 and Y_2 ?

(ii) Let U_1 and U_2 denote two independent random variables with Uniform distributions on [0, 1], and define

$$X_1 := \sqrt{-2\log(U_1)} \cos(2\pi U_2),$$

$$X_2 := \sqrt{-2\log(U_1)} \sin(2\pi U_2).$$

Determine the joint distribution of (X_1, X_2) .

Exercise 5 (Log-normal distribution). The two questions below are independent. Consider the standard Gaussian distribution $X \sim \mathcal{N}(0, 1)$, with density

$$f(x) = \frac{1}{\sqrt{2\pi}} \exp\left\{-\frac{x^2}{2}\right\}, \quad \text{for all } x \in \mathbb{R}.$$

- (i) Compute $\mathbb{E}[X]$, $\mathbb{V}[X]$ and $\mathbb{E}[e^{uX}]$ for all $u \in \mathbb{R}$ such that the expectation is well defined.
- (ii) Define $Y := \exp\{X\}$. Compute its density, expectation, variance and moment generating function.
- (iii) Does Y have a symmetric distribution? Compute its skewness to confirm your guess.