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Sequential Monte Carlo/Particle Filtering

I Particle filtering introduced in Gordon et al. (1993)

I Most of the material on particle filtering is based on Doucet
et al. (2001) and on the tutorial Doucet & Johansen (2008).

I Examples:
I Tracking of Objects
I Robot Localisation
I Financial Applications
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Setup - Hidden Markov Model
I x0, x1, x2, . . . : unobserved Markov chain - hidden states

I y1, y2, . . . : observations;

x0 x1

y1

x2

y2

x3

y3

x4

y4

. . .

I y1, y2, . . . are conditionally independent given x0, x1, . . .

I Model given by
I π(x0) - the initial distribution
I f (xt |xt−1) for t ≥ 1 - the transition kernel of the Markov chain
I g(yt |xt) for t ≥ 1 - the distribution of the observations

I Notation:
I x0:t = (x0, . . . , xt) - hidden states up to time t
I y1:t = (y1, . . . , yt) - observations up to time t

I Interested in the posterior distribution p(x0:t |y1:t) or in p(xt |y1:t)
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Some Remarks

I No explicit solution in the general case - only in special cases.

I Will focus on the time-homogeneous case, i.e. the transition
densities f and the density of the observations g will be the
same for each step.
Extensions to inhomogeneous case straightforward.

I It is important that one is able to update quickly as new data
becomes available, i.e. if yt+1 is observed want to be able to
quickly compute p(xt+1|y1:t+1) based on p(xt |y1:t) and yt+1.
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Example- Bearings Only Tracking
I Gordon et al. (1993); Ship moving in the two-dimensional plane
I Stationary observer sees only the angle to the ship.
I Hidden states: position xt,1, xt,2, speed xt,3, xt,4.
I Speed changes randomly

xt,3 ∼ N(xt−1,3, σ
2), xt,4 ∼ N(xt−1,4, σ

2)

I Position changes accordingly

xt,1 = xt−1,1 + xt−1,3, xt,2 = xt−1,2 + xt−1,4

I Observations: yt ∼ N(tan−1(xt,1/xt,2), η2)
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Example- Stochastic Volatility

I Returns: yt ∼ N(0, β2 exp(xt)) (observable from price data)

I Volatility: xt ∼ N(αxt−1,
σ2

(1−α)2 ), x1 ∼ N(0, σ2

(1−α)2 ),

I σ = 1, β = 0.5, α = 0.95
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Hidden Markov Chain with finitely many states

I If the hidden process xt takes only finitely many values then
p(xt+1|y1:t+1) can be computed recursively via

p(xt+1|y1:t+1) ∝ g(yt+1|xt+1)
∑
xt

f (xt+1|xt)p(xt |y0:t)

I May not be practicable if there are too many states!
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Kalman Filter
I Kalman (1960)

I Linear Gaussian state space model:

I x0 ∼ N(x̂0,P0)
I xt = Axt−1 + wt

I yt = Hxt + vt
I wt ∼ N(0,Q) iid, vt ∼ N(0,R) iid
I A, H deterministic matrices; x̂0, P0, A, H, Q, R known

I Explicit computation and updating of the posterior possible:

Posterior: xt |y1, . . . , yt ∼ N(x̂t ,Pt)

Time Update

x̂−t = Ax̂t−1

P−t = APt−1A
′ + Q

x̂0, P0

Measurement Update

Kt = P−t H ′(HP−t H ′ + R)−1

x̂t = x̂−t + Kt(yt − H x̂−t )
Pt = (I − KtH)P−t



Kalman Filter - Simple Example
I x0 ∼ N(0, 1)
I xt = 0.9xt−1 + wt

I yt = 2xt + vt
I wt ∼ N(0, 1) iid, vt ∼ N(0, 1) iid
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Kalman Filter - Remarks I

I Updating very easy - only involves linear algebra.

I Very widely used

I A, H, Q and R can change with time

I A linear control input can be incorporated, i.e. the hidden state
can evolve according to

xt = Axt−1 + But−1 + wt−1

where ut can be controlled.

I Normal prior/updating/observations can be replaced through
appropriate conjugate distributions.

I Continuous Time Version: Kalman-Bucy filter
See Øksendal (2003) for a nice introduction.
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Kalman Filter - Remarks II
I Extended Kalman Filter

extension to nonlinear dynamics:

I xt = f (xt−1, ut−1,wt−1)
I yt = g(xt , vt).

where f and g are nonlinear functions.
The extended Kalman filter linearises the nonlinear dynamics
around the current mean and covariance.
To do so it uses the Jacobian matrices, i.e. the matrices of
partial derivatives of f and g with respect to its components.
The extended Kalman filter does no longer compute precise
posterior distributions.
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What to do if there were no observations...

x0 x1

y1

x2

y2

x3

y3

x4

y4

. . .

Without observations yi the following simple approach would work:

I Sample N particles following the initial distribution

x
(1)
0 , . . . , x

(N)
0 ∼ π(x0)

I For every step propagate each particle according to the
transition kernel of the Markov chain:

x
(j)
i+1 ∼ f (·|x(j)

i ), j = 1, . . . ,N

I After each step there are N particles that approximate the
distribution of xi .

I Note: very easy to update to the next step.
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Importance Sampling

I Cannot sample from x0:t |y1:t directly.
I Main idea: Change the density we are sampling from.
I Interested in E(φ(x0:t)|y1:t) =

∫
φ(x0:t)p(x0:t |y1:t)dx0:t

I For any density h,

E(φ(x0:t)|y1:t) =

∫
φ(x0:t)

p(x0:t |y1:t)

h(x0:t)
h(x0:t)dx0:t ,

I Thus an unbiased estimator of E(φ(x0:t)|y1:t) is

Î =
1

N

N∑
i=1

φ(xi0:t)w
i
t ,

where w i
t =

p(xi0:t |y1:t)

h(xi0:t)
and x1

0:t , . . . , x
N
0:t ∼ h iid.

I How to evaluate p(xi0:t |y1:t)?
I How to choose h? Can importance sampling be done recursively?

Axel Gandy Particle Filtering 15
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Sequential Importance Sampling I

I Recursive definition and sampling of the importance sampling
distribution:

h(x0:t) = h(xt |x0:t−1)h(x0:t−1)

I Can the weights be computed recursively? By Bayes’ Theorem:

wt =
p(x0:t |y1:t)

h(x0:t)
=

p(y1:t |x0:t)p(x0:t)

h(x0:t)p(y1:t)

Hence,

wt =
g(yt |xt)p(y1:t−1|x0:t−1)f (xt |xt−1)p(x0:t−1)

h(xt |x0:t−1)h(x0:t−1)p(y1:t)

Thus,

wt = wt−1
g(yt |xt)f (xt |xt−1)

h(xt |x0:t−1)

p(y1:t−1)

p(y1:t)
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Sequential Importance Sampling II

I Can work with normalised weights: w̃ i
t = w i

t∑
j w

j
t

; then one gets

the recursion

w̃ i
t ∝ w̃ i

t−1

g(yt |xit)f (xit |xit−1)

h(xit |xi0:t−1)

I If one uses uses the prior distribution h(x0) = π(x0) and
h(xt |x0:t−1) = f (xt |xt−1) as importance sampling distribution
then the recursion is simply

w̃ i
t ∝ w̃ i

t−1g(yt |xit)
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Failure of Sequential Importance Sampling

I Weights degenerate as t increases.
I Example: x0 ∼ N(0, 1), xt+1 ∼ N(xt , 1), yt ∼ N(xt , 1).

I N = 100 particles
I Plot of the empirical cdfs of the normalised weights w̃1

t , . . . ,w
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I Most weights get very small.
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Resampling

I Goal: Eliminate particles with very low weights.

I Suppose

Q =
N∑
i=1

w̃ i
tδxit

is the current approximation to the distribution of xt .
I Then one can obtain a new approximation as follows:

I Sample N iid particles x̃it from Q
I The new approximation is

Q̃ =
N∑
i=1

1

N
δx̃it

Axel Gandy Particle Filtering 19
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The Bootstrap Filter

1. Sample x
(i)
0 ∼ π(x0) and set t = 1

2. Importance Sampling Step
For i = 1, . . . ,N:

I Sample x̃
(i)
t ∼ f (xt |x(i)

t−1) and set x̃
(i)
0:t = (x

(i)
0:t−1, x̃

(i)
t )

I Evaluate the importance weights w̃
(i)
t = g(yt |x̃

(i)
t ).

3. Selection Step:

I Resample with replacement N particles (x
(i)
0:t ; i = 1, . . . ,N) from

the set {x̃(1)
0:t , . . . , x̃

(1)
0:t } according to the normalised importance

weights w̃
(i)
t∑N

j=1 w̃
(j)
t

.

I t:=t+1; go to step 2.
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Illustration of the Bootstrap Filter
N=10 particles
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Example- Bearings Only Tracking

I N = 10000 particles
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Example- Stochastic Volatility

I Bootstrap Particle Filter with N = 1000
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Example: Football

I Data: Premier League 2007/08
I xt,j “strength” of the jth team at time t, j = 1, . . . , 20
I yt result of the games on date t
I Note: not time-homogeneous (different teams playing

one-another - different time intervals between games).
I Model:

I Initial distribution of the strength: xt,j ∼ N(0, 1)
I Evolution of strength: xt,j ∼ N((1−∆/β)1/2xt−∆,j ,∆/β)

will use β = 50
I Result of games conditional on strength:

Match between team H of strength xH (at home) against team A
of strength xA.
Goals scored by the home team ∼ Poisson(λH exp(xH − xA))
Goals scored by the away team ∼ Poisson(λA exp(xA − xH))
λH and λA constants chosen based on the average number of
goals scored at home/away.
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Mean Team Strength
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League Table at the end of 2007/08
1 Man Utd 87
2 Chelsea 85
3 Arsenal 83
4 Liverpool 76
5 Everton 65
6 Aston Villa 60
7 Blackburn 58
8 Portsmouth 57
9 Manchester City 55
10 West Ham Utd 49
11 Tottenham 46
12 Newcastle 43
13 Middlesbrough 42
14 Wigan Athletic 40
15 Sunderland 39
16 Bolton 37
17 Fulham 36
18 Reading 36
19 Birmingham 35
20 Derby County 11



Influence of the Number N of Particles
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Theoretical Results

I Convergence results are as N →∞
I Laws of Large Numbers

I Central limit theorems
see e.g. Chopin (2004)

I The central limit theorems yield an asymptotic variance. This
asymptotic variance can be used for theoretical comparisons of
algorithms.

Axel Gandy Particle Filtering 28



Introduction Particle Filtering Improving the Algorithm Further Topics Summary

Outline
Introduction

Particle Filtering

Improving the Algorithm
General Proposal Distribution
Improving Resampling

Further Topics

Summary

Axel Gandy Particle Filtering 29



Introduction Particle Filtering Improving the Algorithm Further Topics Summary

General Proposal Distribution

Algorithm with a general proposal distribution h:

1. Sample x
(i)
0 ∼ π(x0) and set t = 1

2. Importance Sampling Step
For i = 1, . . . ,N:

I Sample x̃
(i)
t ∼ ht(xt |x(i)

t−1) and set x̃
(i)
0:t = (x

(i)
0:t−1, x̃

(i)
t )

I Evaluate the importance weights w̃
(i)
t =

g(yt |x̃
(i)
t )f (x̃

(i)
t |x

(i)
t−1)

ht(x̃
(i)
t |x

(i)
t−1)

.

3. Selection Step:
I Resample with replacement N particles (x

(i)
0:t ; i = 1, . . . ,N) from

the set {x̃(1)
0:t , . . . , x̃

(1)
0:t } according to the normalised importance

weights w̃
(i)
t∑N

j=1 w̃
(j)
t

.

I t:=t+1; go to step 2.

Optimal proposal distribution depends on quantity to be estimated.
generic choice: choose proposal to minimise the variance of the
normalised weights.
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Improving Resampling

I Resampling was introduced to remove particles with low weights

I Downside: adds variance
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Other Types of Resampling
I Goal: Reduce additional variance in the resampling step

I Standardised weights W 1, . . . ,WN ;

I N i - number of ‘offspring’ of the ith element.

I Need EN i = W iN for all i .

I Want to minimise the resulting variance of the weights.

Multinomial Resampling - resampling with replacement

Systematic Resampling I Sample U1 ∼ U(0, 1/N). Let
Ui = U1 + i−1

N , i = 2, . . . ,N

I N i = |{j :
∑i−1

k=1 W
k ≤ Uj ≤

∑i
k=1 W

k |
Residual Resampling I Idea: Guarantee at least Ñ i = bW iNc

offspring of the ith element;
I N̄1, . . . , N̄n: Multinomial sample of N −

∑
Ñ i

items with weights W̄ i ∝W i − Ñ i/N.
I Set N i = Ñ i + N̄ i .



Adaptive Resampling
I Resampling was introduced to remove particles with low weights.
I However, resampling introduces additional randomness to the

algorithm.
I Idea: Only resample when weights are “too uneven”.
I Can be assessed by computing the variance of the weights and

comparing it to a threshold.
I Equivalently, one can compute the “effective sample size” (ESS):

ESS =

(
n∑

i=1

(w i
t )2

)−1

.

(w1
t , . . . ,w

n
t are the normalised weights)

I Intuitively the effective sample size describes how many samples
from the target distribution would be roughly equivalent to
importance sampling with the weights w i

t .
I Thus one could decide to resample only if

ESS < k

where k can be chosen e.g. as k = N/2.
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Path Degeneracy

Let s ∈ N.

#{xi0:s : i = 1, . . . ,N} → 1 (as # of steps t → infty)

Example

x0 ∼ N(0, 1), xt+1 ∼ N(xt , 1), yt ∼ N(xt , 1). N = 100 particles.
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Particle Smoothing

I Estimate the distribution of the state xt given all the
observations y1, . . . , yτ up to some late point τ > t.

I Intuitively, a better estimation should be possible than with
filtering (where only information up to τ = t is available).

I Trajectory estimates tend to be smoother than those obtained by
filtering.

I More sophisticated algorithms are needed.
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Filtering and Parameter Estimates

I Recall that the model is given by
I π(x0) - the initial distribution
I f (xt |xt−1) for t ≥ 1 - the transition kernel of the Markov chain
I g(yt |xt) for t ≥ 1 - the distribution of the observations

I In practical applications these distributions will not be known
explicitly - they will depend on unknown parameters themselves.

I Two different starting points
I Bayesian point of view: parameters have some prior distribution
I Frequentist point of view: parameters are unknown constants.

I Examples:

Stoch. Volatility: xt ∼ N(αxt−1,
σ2

(1−α)2 ), x1 ∼ N(0, σ2

(1−α)2 ),

yt ∼ N(0, β2 exp(xt))
Unknown parameters: σ, β, α

Football: Unknown Parameters: β, λH , λA.

I How to estimate these unknown parameters?
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Maximum Likelihood Approach

I Let θ ∈ Θ contain all unknown parameters in the model.

I Would need marginal density pθ(y1:t).

I Can be estiamted by running the particle filter for each θ of
interest and by muliplying the unnormalised weights, see the
slides Sequential Importance Sampling I/II earlier in the lecture
for some intuition.
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Artificial(?) Random Walk Dynamics

I Allow the parameters to change with time - give them some
dynamic.

I More precisely:
I Suppose we have a parameter vector θ
I Allow it to depend on time (θt),
I assign a dynamic to it, i.e. a prior distribution and some

transition probability from θt−1 to θt

I incorporate θt in the state vector xt

I May be reasonable in the Stoch. Volatility and Football Example
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Bayesian Parameters

I Prior on θ

I Want: Posterior p(θ|y1, . . . , yt).
I Naive Approach:

I Incorporate θ into xt ; transition for these components is just the
identity

I Resampling will lead to θ degenerating - after a moderate
number of steps only few (or even one) θ will be left

I New approaches:
I Particle filter within an MCMC algorithm, Andrieu et al. (2010) -

computationally very expensive.
I SMC2 by Chopin, Jacob, Papaspiliopoulos, arXiv:1101.1528.
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Concluding Remarks

I Active research area

I A collection of references/resources regarding SMC http:

//www.stats.ox.ac.uk/~doucet/smc_resources.html

I Collection of application-oriented articles: Doucet et al. (2001)

I Brief introduction to SMC: (Robert & Casella, 2004, Chapter 14)

I R-package implementing several methods: pomp
http://pomp.r-forge.r-project.org/
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