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Introduction

I Main idea:
Estimate properties of estimators (such as the variance,
distribution, confidence intervals) by resampling the original
data.

I Key paper: Efron (1979)
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Slightly expanded version of the key idea

I Classical Setup in Statistics:

X ∼ F , F ∈ Θ

where X is the random object containing the entire observation.
(often, Θ = {Fa; a ∈ A} with A ⊂ Rd).

I Tests, CIs, . . . are often built on a real-valued test statistics
T = T (X ).

I Need distributional properties of T for the “true” F (or for F
under H0) to do tests, construct CIs,. . . (e.g. quantiles, sd, . . .).

I Classical approach: construct T to be an (asymptotic) pivotal
quantity, with distribution not depending on the unknown
parameter. This is often not possible or requires lengthy
asymptotic analysis.

I Key idea of bootstrap: Replace F by (some) estimate F̂ , get
distributional properties of T based on F̂ .
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Mouse Data

(Efron & Tibshirani, 1993, Ch. 2)

I 16 mice randomly assigned to treatment or control
I Survival time in days following a test surgery

Group Data Mean (SD) Median (SD)

Treatment 94 197 16 38 99 141 23 86.86 (25.24) 94 (?)
Control 52 104 146 10 51 30 40 27 46 56.22 (14.14) 46 (?)

Difference: 30.63 (28.93) 48 (?)
I Did treatment increase survival time?

I A good estimator of the the standard deviation of the mean
x̄ = 1

n

∑n
i=1 xi is the sample error

ŝ =
√

1
n(n−1)

∑n
i=1(xi − x̄)2

I What estimator to use for the SD of the median?
I What estimator to use for the SD of other statistics?
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Bootstrap Principle
I test statistic T (x), interested in SD(T (X))

I Resampling with replacement from x1, . . . , xn gives a bootstrap
sample x∗ = (x∗1 , . . . , x

∗
n ) and a bootstrap replicate T (x∗).

I get B independent bootstrap replicates T (x∗1), . . . ,T (x∗B)

I estimate SD(T (X)) by the empirical standard deviation of
T (x∗1), . . . ,T (x∗B)

x =

x1
...
xn


x∗1 T (x∗1)

x∗2 T (x∗2)

...
...

x∗B T (x∗B)

dataset
bootstrap
samples

bootstrap
replications
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Back to the Mouse Example

I B=10000

I Mean:
Mean bootstrap SD

Treatment 86.86 23.23
Control 56.22 13.27

Difference 30.63 26.75

I Median:
Median bootstrap SD

Treatment 94 37.88
Control 46 13.02

Difference 48 40.06
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Illustration

Real World

Unknown
Probability
Model

P

Observed
Random
Sample

x = (x1, . . . , xn)

T (x)
Statistic of Interest

Bootstrap World

Estimated
Probability
Model

P̂

Bootstrap
Sample

x∗ = (x∗1 , . . . , x
∗
n )

T (x∗)
Bootstrap Replication
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Sources of Variability

I sampling variability (we only have a sample of size n)

I bootstrap resampling variability (only B bootstrap samples)

unknown
probability
measure

P

x

x∗1 T (x∗1)

x∗2 T (x∗2)

...
...

x∗B T (x∗B)

sample
bootstrap
samples

sampling variability bootstrap sampling variability
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Parametric Bootstrap

I Suppose we have a parametric model Pθ, θ ∈ Θ ⊂ Rd .

I θ̂ estimator of θ

I Resample from the estimated model Pθ̂.
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Example:Problems with (the Nonparametric) Bootstrap
I X1, . . . ,X50 ∼ U(0, θ) iid, θ > 0

I MLE θ̂ = max(X1, . . . ,X50) = 0.989

I Non-parametric Bootstrap:
X ∗1 , . . . ,X

∗
50 sampled indep. from X1, . . . ,X50 with replacement.

I Parametric Bootstrap: X ∗1 , . . . ,X
∗
50 ∼ U(0, θ̂)

I Resulting CDF of θ̂∗ = max(X1, . . . ,X50):
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I In the nonparametric bootstrap: Large probability mass at θ̂.
In fact P(θ̂∗ = θ̂) = 1− (1− 1/n)n

n→∞−→ 1− e−1 ≈ .632
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Plug-in Principle I

I Many quantities of interest can be written as a functional T of
the underlying probability measure P, e.g. the mean can be
written as

T (P) =

∫
xd P(x).

I Suppose we have iid observation X1, . . . ,Xn from P. Based on
this we get an estimated distribution P̂ (empirical distribution or
parametric distribution with estimated parameter).

I We can use T (P̂) as an estimator of T (P).
For the mean and the empirical distribution P̂ of the
observations Xi this is just the sample mean:

T (P̂) =

∫
xdP̂(x) =

1

n

n∑
i=1

Xi
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Plug-in Principle II
I To determine the variance of the estimator T (P̂), compute

confidence intervals for T (P), or conduct tests we need the
distribution of T (P̂)− T (P).

I Bootstrap sample: sample X ∗1 , . . . ,X
∗
n from P̂; gives new

estimated distribution P∗.

I Main idea: approximate the distribution of

T (P̂)− T (P)

by the distribution of

T (P∗)− T (P̂)

(which is conditional on the observed P̂).
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Bootstrap Interval

I Quantity of interest is T (P)

I To construct a one-sided 1− α CI we would need c s.t.
P(T (P̂)− T (P) ≥ c) = 1− α.
Then a 1− α CI would be (−∞,T (P̂)− c).
Of course, P and thus c are unknown.

I Instead of c use c∗ given by

P̂(T (P∗)− T (P̂) ≥ c∗) = 1− α

This gives the (approximate) confidence interval

(−∞,T (P̂)− c∗)

I Similarly for two-sided confidence intervals.
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Studentized Bootstrap Interval

I Improve coverage probability by studentising the estimate.

I quantity of interest T (P), measure of standard deviation σ(P)

I Base confidence interval on T (P̂)−T (P)

σ(P̂)

I Use quantiles from T (P∗)−T (P̂)
σ(P∗) .

Axel Gandy Bootstrap 16



Introduction CIs Hypothesis Tests Asymptotics Higher Order Theory Iterated Bootstrap Dependent Data Further Topics

Efron’s Percentile Method

I Use quantiles from T (P∗)

I (less theoretical backing)

I Agrees with simple bootstrap interval for symmetric resampling
distributions, but does not work well with skewed distributions.
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Example - CI for Mean of Exponential Distribution I
I X1, . . . ,Xn ∼ Exp(θ) iid

I Confidence interval for EX1 = 1
θ .

I Nominal level 0.95

I One-sided confidence intervals:
Coverage probabilities:

10 20 40 80 160 320

Normal Approximation 0.845 0.883 0.904 0.919 0.928 0.934
Bootstrap 0.817 0.858 0.892 0.922 0.917 0.94
Bootstrap - Percentile Method 0.848 0.876 0.906 0.92 0.932 0.94
Bootstrap - Studentized 0.902 0.922 0.942 0.949 0.946 0.944

I 100000 replications for the normal CI, bootstrap CIs based on
2000 replications with 500 bootstrap samples each

I Substantial coverage error for small n
I Coverage error ↘ as n↗
I Studentized Bootstrap seems to be doing best.



Example - CI for Mean of Exponential Distribution II
I Two-sided confidence intervals

Coverage probabilities:
10 20 40 80 160 320

Normal Approximation 0.876 0.914 0.93 0.947 0.949 0.95
Bootstrap 0.828 0.89 0.906 0.928 0.936 0.942
Bootstrap - Percentile Method 0.854 0.896 0.921 0.926 0.923 0.93
Bootstrap - Studentized 0.944 0.943 0.936 0.936 0.954 0.946

I Number of replications as before
I Smaller coverage error than for one-sided test.
I Again the studentized bootstrap seems to be doing best.
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Hypothesis Testing through Bootstrapping

I Setup: H0 : θ ∈ Θ0 v.s. H1 : θ /∈ Θ0

I Observed sample: x
I Suppose we have a test with a test statistic T = T (X) that

rejects for large values
I p-value, in general: p = supθ∈Θ0

Pθ(T (X) ≥ T (x))
If we know that only θ0 might be true: p = Pθ0(T (X) ≥ T (x))

I Using the sample, find estimator P̂0 of the distr. of X under H0

I Generate iid X∗1, . . . ,X∗B from P̂0

I Approximate the p-value via

p̂ =
1

B

B∑
i=1

I(T (X∗i ) ≥ T (x))

I To improve finite sample performance, it has been suggested to
use

p̂ =
1 +

∑B
i=1 I(T (X∗i ) ≥ T (x))

B + 1
Axel Gandy Bootstrap 21



Example - Two Sample Problem - Mouse Data
I Two Samples: treatment y and control z with cdfs F and G
I H0 : F = G , H1 : G ≤st F
I T (x) = T (y, z) = y − z, reject for large values
I Pooled sample: x = (y′, z′).
I Bootstrap sample x∗ = (y∗′, z∗′) : sample from x with

replacement
I p-value: generate independent bootstrap samples x∗1, . . . , x∗B

p̂ =
1

B

B∑
i=1

I{T (x∗i ) ≥ T (x)}

I Mouse Data: tobs = 30.63 B= 2000 p̂ = 0.134
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How to Choose the Number of Resamples (i.e. B)? I
(Davison & Hinkley, 1997, Section 4.25)

I Not using the ideal bootstrap based on infinite number of
resamples leads to a loss of power!

I Indeed, if π∞(u) is the power of a fixed alternative for a test of
level u then it turns out that the power πB(u) of a test based on
B bootstrap resamples is

πB(u) =

∫ 1

0
π∞(u)f(B+1)α,(B+1)(1−α)(u)du

where f(B+1)α,(B+1)(1−α)(u) is the Beta-density with parameters
(B + 1)α and (B + 1)(1− α).



How to Choose the Number of Resamples (i.e. B)? II
I If one assumes that πB(u) is concave, then one can obtain the

approximate bound

πB(α)

π∞(α)
≥ 1−

√
1− α

2π(B + 1)α

A table of those bounds:
B= 19 39 99 199 499 999 9999

α = 0.01 0.11 0.37 0.6 0.72 0.82 0.87 0.96
α = 0.05 0.61 0.73 0.83 0.88 0.92 0.95 0.98

(these bounds may be conservative)

I To be safe: use at least B = 999 for α = 0.05 and even a higher
B for smaller α.
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Sequential Approaches

I General Idea: Instead of a fixed number of resamples B, allow
the number of resamples to be random.

I Can e.g. stop sampling once test decision is (almost) clear.
I Potential advantages:

I Save computer time.
I Get a decision with a bounded resampling error.
I May avoid loss of power.
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Saving Computational Time

I It is not necessary to estimate high values of the p-value p
precisely.

I Stop if Sn =
∑n

i=1 I(T (X∗i ) ≥ T (x)) “large”.
I Besag & Clifford (1991):

Stop after τ = min{n : Sn ≥ h} ∧m steps

0 m
n

0

h

Sn

I Estimator: p̂ =

{
h/τ Sτ = h

(Sτ + 1)/m else

Axel Gandy Bootstrap 26



Uniform Bound on the Resampling Risk
The boundaries below are constructed to give a uniform bound on
the resampling risk: ie for some (small) ε > 0,

sup
p

Pp(wrong decision) ≤ ε

0 200 400 600 800 1000

0
20

40
60

80

n

Un

Ln

Details, see Gandy (2009).
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Other issues

I How to compute the power/level (rejection probability) of
Bootstrap tests?
See (Gandy & Rubin-Delanchy, 2013) and references therein.

I How to use bootstrap tests in multiple testing corrections (eg
FDR)?
See (Gandy & Hahn, 2012) and references therein.
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Main Idea

I Asymptotic theory does not take the resampling error into
account - it assumes the ’ideal’ bootstrap with an infinite
number of replications.

I Observations X1,X2, . . .

I Often: √
n(T (P̂)− T (P))

d→ F

for some distribution F .

I Main asymptotic justification of the bootstrap:
Conditional on the observed X1,X2, . . . :

√
n(T (P∗)− T (P̂))

d→ F
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Conditional central limit theorem for the mean

I Let X1,X2, . . . be iid random vectors with mean µ and
covariance matrix Σ.

I For every n, suppose that X̄ ∗n = 1
n

∑n
i=1 X

∗
i , where X ∗i are

samples from X1, . . . ,Xn with replacement.

I Then conditionally on X1,X2, . . . for almost every sequence
X1,X2, . . . ,

√
n(X̄ ∗n − X̄n)

d→ N(0,Σ) (n→∞).

I Proof:
Mean and Covariance of X̄ ∗n are easy to compute in terms of
X1, . . . ,Xn.
Use central limit theorem for triangular arrays (Lindeberg central
limit theorem).
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Delta Method

I Can be used to derive convergence results for derived statistics,
in our case functions of the sample mean.

I Delta method: If φ is continuously differentiable,
√
n(θ̂n − θ)

d→ T and
√
n(θ̂∗n − θ̂)

d→ T conditionally then
√
n(φ(θ̂n)− φ(θ))

d→ φ′(T ) and
√
n(φ(θ̂∗n)− φ(θ̂))

d→ φ′(T )
conditionally.

Example

Suppose θ =

(
E(X )
E(X 2)

)
and θ̂n =

(
1
n

∑n
i=1 Xi

1
n

∑n
i=1 X

2
i

)
. Then convergence

of
√
n(θ̂ − θ) can be established via CLT.

Using φ(µ, η) = η − µ2 gives a limiting result for estimates of
variance.
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Bootstrap and Empirical Process theory

I Flexible and elegant theory based on expectations wrt the
empirical distribution

Pn =
1

n

n∑
i=1

δXi

(many test statistics can be constructed from this)
I Gives uniform CLTs/LLN: Donkser theorems/Glivenko-Cantelli

theorems
I Can be used to derive asymptotic results for the bootstrap (e.g.

for bootstrapping the sample median);
use the bootstrap empirical distribution

P∗n =
1

n

n∑
i=1

δX∗
i
.

I For details see van der Vaart (1998, Section 23.1) and van der
Vaart & Wellner (1996, Section 3.6).
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Introduction

I It can be shown that that the bootstrap has a faster
convergence rate than simple normal approximations.

I Main tool: Edgeworth Expansion - refinement of the central
limit theorem

I Main aim of this section: to explain the Edgeworth expansion
and then mention briefly how it gives the convergence rates for
the bootstrap.

I (reminder: this is still not taking the resampling risk into
account, i.e. we still assume B =∞)

I For details see Hall (1992).
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Edgeworth Expansion
I θ0 unknown parameter
I θ̂n estimator based on sample of size n
I Often, √

n(θ̂n − θ)
d→ N(0, σ2) (n→∞),

i.e. for all x ,

P(
√
n
θ̂n − θ
σ

≤ x)→ Φ(x) n→∞,

where Φ(x) =
∫ x
−∞ φ(t)dt, φ(t) = 1√

2π
e−t

2/2.

I Often one can write this as power series in n−
1
2 :

P(
√
n
θ̂n − θ
σ

≤ x) = Φ(x)+n−
1
2 p1(x)φ(x)+· · ·+n−

j
2 pj(x)φ(x)+. . .

This expansion is called Edgeworth Expansion.
I Note: pj is usually an even/odd function for odd/even j .
I Edgeworth Expansion exist in the sense that for a fixed number

of approximating terms, the remainder term is of lower order
than the last included term.
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Edgeworth Expansion - Arithmetic Mean I

I Suppose we have a sample X1, . . . ,Xn, and

θ̂n =
1

n

n∑
i=1

Xi .

I Then
I p1(x) = − 1

6κ3(x2 − 1)
I p2(x) = −x

(
1

24κ4(x2 − 3) + 1
72κ

2
3(x4 − 10x2 + 15)

)
where κj are the cumulants of X , in particular

I κ3 = E(X − EX )3 is the skewness
I κ4 = E(X − EX )4 − 3(VarX )2 is the kurtosis.

(In general, the jth cumulant κj of X is the coefficient of 1
j! (it)j

in a power series expansion of the logarithm of the characteristic
function of X .)
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Edgeworth Expansion - Arithmetic Mean II
I The Edgeworth expansion exists if the following is satisfied:

I Cramér’s condition: lim|t|→∞ |E exp(itX )| < 1 (satisfied if the
observations are not discrete, i.e. possess a density wrt Lebesgue
measure).

I A sufficient number of moments of the observations must exist.
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Edgeworth Expansion - Arithmetic Mean - Example
Xi ∼ Exp(1) iid, θ̂ = 1

n

∑n
i=1 Xi
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Coverage Prob. of CIs based on Asymptotic Normality I
I Suppose we construct a confidence interval based on the

standard normal approximation to

Sn =
√
n(θ̂n − θ0)/σ

where σ is the asymptotic variance of
√
nθ̂n.

I One-sided nominal α-level confidence intervals:

I1 = (−∞, θ̂ + n−1/2σzα)

where zα is defined by Φ(zα) = α.

P(θ0 ∈ I1) = P(θ0 < θ̂ + n−1/2σzα) = P(Sn > −zα)

= 1− (Φ(−zα) + n−1/2p1(−zα)φ(−zα) + O(n−1))

= α− n−1/2p1(zα)φ(zα) + O(n−1)

= α + O(n−1/2)



Coverage Prob. of CIs based on Asymptotic Normality II
I Two-sided nominal α-level confidence intervals:

I2 = (θ̂ − n−1/2σxα, θ̂ + n−1/2σxα)

where xα = z(1+α)/2,

P(θ0 ∈ I2) = P(Sn ≤ xα)− P(Sn ≤ −xα)

=Φ(xα)− Φ(−xα)

+ n−1/2[p1(xα)φ(xα)− p1(−xα)φ(−xα)]

+ n−1[p2(xα)φ(xα)− p2(−xα)φ(−xα)]

+ n−3/2[p3(xα)φ(xα)− p3(−xα)φ(−xα)] + O(n−2)

=α + 2n−1p2(xα)φ(zα) + O(n−2) = α + O(n−1)

I To summarise: Coverage error for one-sided CI: O(n−1/2), for
two-sided CI: O(n−1).
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Higher Order Convergence of the Bootstrap I

I Will consider the studentized bootstrap first.

I Consider the following Edgeworth expansion of θ̂n−θ
σ̂n

:

P

(
θ̂n − θ
σ̂n

≤ x

)
= Φ(x) + n−

1
2 p1(x)φ(x) + O

(
1

n

)
I The Edgeworth expansion usually remains valid in a conditional

sense, i.e.

P̂

(
θ̂∗n − θ̂n
σ∗n

≤ x

)
= Φ(x)+n−

1
2 p̂1(x)φ(x)+· · ·+n−

j
2 p̂j(x)φ(x)+. . .

Use the first expansion term only , i.e.
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Higher Order Convergence of the Bootstrap II

P̂

(
θ̂∗n − θ̂n
σ∗n

≤ x

)
= Φ(x) + n−

1
2 p̂1(x)φ(x) + O

(
1

n

)
Usually p̂1(x)− p1(x) = O( 1√

n
).

I Then

P

(
θ̂n − θ
σ̂n

≤ x

)
− P̂

(
θ̂∗n − θ̂n
σ∗

≤ x

)
= O

(
1

n

)
I Thus the studentized bootstrap results in a better rate of

convergence than the normal approximation (which is O(1/
√
n)

only).

I For a non-studentized bootstrap the rate of convergence is only
O(1/

√
n).
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Higher Order Convergence of the Bootstrap III
I This translates to improvements in the coverage probability of

(one-sided) confidence intervals.
The precise derivations of these also involve the so-called
Cornish-Fisher expansions, an expansion of quantile functions
similar to the Edgeworth expansion (which concerns distribution
functions).
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Introduction

I Iterate the Bootstrap to improve the statistical performance of
bootstrap tests, confidence intervals,...

I If chosen correctly, the iterated bootstrap can have a higher rate
of convergence than the non-iterated bootstrap.

I Can be computationally intensive.

I Some references: Davison & Hinkley (1997, Section 3.9), Hall
(1992, Section 1.4,3.11)
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Double Bootstrap Test
(based on Davison & Hinkley, 1997, Section 4.5)

I Ideally the p-value under the null distribution should be a
realisation of U(0, 1).

I However, computing p-values via the bootstrap does not
guarantee this
(measures such as studentising the test statistics may help - but
there is no guarantee)

I Idea: use an iterated version of the bootstrap to correct the
p-value.

I let p be the p-valued based on P̂.

I observed - data → fitted model P̂;

I Let p∗ be the random variable obtained by resampling from P̂.

I padj = P∗(p∗ ≤ p|P̂)



Implementation of a Double Bootstrap Test
Suppose we have a test that rejects for large values of a test statistic.
Algorithm: For r = 1, . . . ,R:

I Generate X ∗1 , . . .X
∗
n from the fitted null distribution P̂, calculate

the test statistic t∗r from it

I Fit the null distribution to X ∗1 , . . . ,X
∗
n obtaining P̂r

I For m = 1, . . . ,M:
I generate X ∗∗1 , . . .X ∗∗n from P̂r

I calculate the test statistic t∗∗rm from them

I Let p∗r = 1+#{t∗∗rm≥t∗r }
1+M .

Let padj = 1+#{p∗r ≤p}
1+M

Effort: MR simulations.
M can be chosen smaller than R, e.g. M = 99 or M = 249.
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Dependent Data

I Often observations are not independent

I Example: time series

I → Bootstrap needs to be adjusted

I Main source for this chapter: Lahiri (2003).
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Dependent Data - Example I

(Lahiri, 2003, Example 1.1, p. 7)

I X1, . . . ,Xn generated by a stationary ARMA(1,1) process:

Xi = βXi−1 + εi + αεi−1

where |α| < 1, |β| < 1, (εi ) is white noise, i.e. E εi = 0,
Var εi = 1.

I Realisation of length n = 256 with α = 0.2, β = 0.3,
εi ∼ N(0, 1):

0 50 100 150 200 250

−
3

−
2

−
1

0
1

2

n

X
n
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Dependent Data - Example II
I Interested in variance of X̄n = 1

n

∑n
i=1 Xi .

I Use the Nonoverlapping Block Bootstrap (NBB); Blocks of
length l:

I B1 = (X1, . . . ,Xl)
I B2 = (Xl+1, . . . ,X2l)
I . . .
I Bn/l = (Xn−l+1, . . . ,Xn)

I resample blocks B∗1 , . . . ,B
∗
n/l with replacement; concatenate to

get bootstrap sample

(X ∗1 , . . . ,X
∗
n )

I Bootstrap estimator of variance: Var( 1
n

∑n
i=1 X

∗
i )

(can be computed explicitly in this case - no resampling
necessary)
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Dependent Data - Example III
I Results for the above sample:

True Variance Var(X̄n) = 0.0114 (based on 20000 simulations)
l 1 2 4 8 16 32 64

V̂ar(X̄n) 0.0049 0.0063 0.0075 0.0088 0.0092 0.0013 0.0016

I bias, standard deviation,
√

MSE based on 1000 simulations:
l 1 2 4 8 16 32 64

bias -0.0065 -0.0043 -0.0025 -0.0016 -0.0013 -0.0017 -0.0031
sd 5e-04 0.001 0.0016 0.0024 0.0035 0.0052 0.0069√

MSE 0.0066 0.0044 0.003 0.0029 0.0038 0.0055 0.0076

Note:
I block size =1 is the classical IID bootstrap
I Variance increases with block size
I Bias decreases with block size
I Bias-Variance trade-off
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Moving Block Bootstrap (MBB)

I X1, . . . ,Xn observations (realisations of a stationary process)

I l block length.

I Bi = (Xi , . . . ,Xi+l−1) block starting at Xi .
I To get a bootstrap sample:

I Draw with replacement B∗1 , . . . ,B
∗
k from B1, . . . ,Bn−l+1.

I Concatenate the blocks B∗1 , . . . ,B
∗
k to give the bootstrap sample

X ∗1 , . . . ,X
∗
kl

I l = 1 corresponds to the classical iid bootstrap.
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Nonoverlapping Block Bootstrap (NBB)

I Blocks in the MBB may overlap

I X1, . . . ,Xn observations (realisations of a stationary process)

I l block length.

I b = bn/lc blocks:

Bi = (Xil+1, . . . ,Xil+l−1), i = 0, . . . , b − 1

I To get a bootstrap sample: draw with replacement from these
blocks and concatenate the resulting blocks.

I Note: Fewer blocks than in the MBB
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Other Types of Block Bootstraps

I Generalised Block Bootstrap
I Periodic extension of the data to avoid boundary effects
I Reuse the sample to form an infinite sequence (Yk):

X1, . . . ,Xn,X1, . . . ,Xn,X1, . . . ,Xn,X1, . . .

I A block B(S , J) is described by its start S and its length J.
I The bootstrap sample is chosen according to some probability

measure on the sequences (S1, J1), (S2, J2), . . .

I Circular block bootstrap (CBB):

sample with replacement from {B(1, l), . . . ,B(n, l)}
→ every observation receives equal weight

I Stationary block bootstrap (SB):

S ∼ Uniform(1, . . . , n), J ∼ Geometric(p)

for some p.
→ blocks are no longer of equal size
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Dependent Data - Remarks

I MBB and CBB outperform NBB and SB
(Lahiri, 2003, see Chapter 5)

I Dependence in Time Series is a relatively simple example of
dependent data

I Further examples are Spatial data or Spatio-Temporal data -
here boundary effects can be far more difficult to handle.
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Bagging I

I Acronym for bootstrap aggregation

I data d = {(x(j), y (j)), j = 1, . . . , n}
response y , predictor variables x ∈ Rp

I Suppose we have a basic predictor m0(x|d)

I Form R resampled data sets d∗1 , . . . , d
∗
R .

I empirical bagged predictor:

m̂B(x|d) =
1

R

R∑
r=1

m0(x|d∗r )

This is an approximation to

mB(x|d) = E∗{m0(x|D∗)}

D∗ resample from d .
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Bagging II
I Example: linear regression with screening of predictors (hard

thresholding)

m0(x|d) =

p∑
i=1

β̂iI(|β̂i | > ci )xi

corresponding bagged estimator:

mB(x|d) =

p∑
i=1

E∗(β̂iI(|β̂i | > ci )|D∗)xi

corresponds to soft thresholding

I Bagging can improve in particular unstable classifiers (e.g. tree
algorithms)
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Bagging III
I For classification problems concerning class membership (i.e. a

0-1 decision is needed), bagging can work via voting (the class
that the basic classifier chooses most often during resampling is
reported as class)

I Key Articles: Breiman (1996a,b), Bühlmann & Yu (2002)
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Boosting

I Related to Bagging

I attach weights to each observation

I iterative improvements of the base classifier by increasing the
weights for those observations that are hardest to classify

I Can yield dramatic reduction in classification error.

I Key articles: Freund & Schapire (1997), Schapire et al. (1998)
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Pointers to the Literature

I Efron & Tibshirani (1993) - easy to read introduction.

I Hall (1992) - Higher order asymptotics

I Lahiri (2003) - Dependent Data

I Davison & Hinkley (1997) - More applied book about the
bootstrap in several situations with implementations in R.

I van der Vaart (1998, Chapter 23): Introduction to the
Asymptotic Theory of Bootstraps.

I van der Vaart & Wellner (1996, Section 3.6): Asymptotic
Theory based on empirical process theory.

I Special Issue of Statistical Science: 2003, Vol 18, No. 2, in
particular Davison et al. (2003)
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