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MCMC methods

I Markov Chain Monte Carlo
I Main idea:

I Want to simulate from a density f or compute functionals of f
such as the mean: E X =

∫
xf (x)dx .

I Construct a Markov Chain whose stationary distribution is f .

Note: Usually f need only be known up to a normalising
constant.

Most of the material in this lecture is from Robert & Casella (2004).

Axel Gandy MCMC 3



Introduction Markov Chains Metropolis Hastings Gibbs Sampling Reversible Jump Diagnosing Convergence Perfect Sampling Remarks

MCMC and Bayesian Models

I MCMC is the main tool used in (applied) Bayesian statistics!
I Observation y
I Model: Y ∼ g(·|θ), θ ∼ π
I Mainly interested in the a-posteriori density:

π(θ|y) =
g(y |θ)π(θ)

m(y)
,

where m(y) =
∫

g(y |θ)π(θ)dθ.
I If θ is high-dimensional - hard to report π(θ|y)
→ report e.g. the posterior mean

E(θ|y) =

∫
θπ(θ|y)dy .

I MCMC: construct Markov chain X1,X2, . . . with stationary
distribution π(θ|y) (evaluation of m is not needed)
run Markov chain for n steps; then E(θ|y) ≈ 1

n

∑n
i=1 Xi
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Definitions
I A sequence X0,X1,X2, . . . of random variables (random objects)

is a Markov chain if for all A and n ∈ N:

P(Xn+1 ∈ A|Xn, . . . ,X0) = P(Xn+1 ∈ A|Xn).

In words: only the distribution of the current state is relevant for
the distribution of the state at the next time.
Note: discrete time, potentially continuous state.

I It is called (time) homogeneous if for all t0 ≤ t1 ≤ · · · ≤ tk :

(Xtk ,Xtk−1
, . . . ,Xt1)|Xt0 ∼ (Xtk−t0 ,Xtk−1−t0 , . . . ,Xt1−t0)|X0

The Markov-chains we encounter will be time-homogeneous.
Example: k = 2, t2 = 10, t1 = 8, t0 = 7. For a time homogeneous

chain, (X10,X8)|X7 ∼ (X3,X1)|X0.

I transition kernel (corresponding to transition matrix):

K (x ,B) = P(Xn+1 ∈ B|Xn = x)

Note: ∀x : K (x , ·) is a probability measure.



Irreducibility, Recurrence X finite: Irreducibility, Recurrence about
reaching individual points.
Here: modification for X continuous.

I X state space of the Markov chain (Xn)

I τA = inf{n ≥ 1 : Xn ∈ A} (first hitting time of A)

I Let φ be a measure.
(Xn) is φ-irreducible if
∀A with φ(A) > 0: Px(τA <∞) > 0 for all x ∈ X .

I ηA =
∑∞

n=1 1A(Xn) (number of passages of Xn through A)
I (Xn) is recurrent if

1. ∃ measure φ s.t. (Xn) is φ-irreducible
2. ∀ A with φ(A) > 0: Ex(ηA) =∞ ∀ x ∈ A.

I (Xn) is Harris recurrent if

1. ∃ a measure φ s.t. (Xn) is φ-irreducible
2. ∀A with φ(A) > 0: Px(ηA =∞) = 1 ∀ x ∈ A.

(Px = Prob measure of Markov chain started at x ,
Ex = expectation taken w.r.t. Px)
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Ergodic Theorems

I Ergodic Theorems= convergence results equivalent to the law of
large numbers in the iid case.

I A σ-finite measure π is invariant for the transition kernel K (·, ·)
(and for the associated chain) if

π(B) =

∫
X

K (x ,B)π(dx), ∀B ∈ B(X )

In other words: Xn ∼ π =⇒ Xn+1 ∼ π
I Ergodic Theorem: If (Xn) has a σ-finite invariant measure π

then the following two statements are equivalent:
1. If f , g ∈ L1(π) with

∫
g(x)dπ(x) 6= 0 then

1
n

∑n
i=1 f (Xi )

1
n

∑n
i=1 g(Xi )

→
∫

f (x)π(dx)∫
g(x)π(dx)

(n→∞)

2. (Xn) is Harris recurrent

Axel Gandy MCMC 9



Theorem (Convergence to the Stationary Distribution)

If (Xn) is Harris recurrent and aperiodic with invariant probability
measure π then

lim
n→∞

∥∥∥∫ Kn(x , ·)µ(dx)− π
∥∥∥
TV

= 0,

for every initial distribution µ, where

Kn is the n step transition kernel and

‖µ1 − µ2‖TV = supA |µ1(A)− µ2(A)| is the total variation norm.

(Xn) is periodic if there exist d ≥ 2 and nonempty disjoint sets
E0, . . . ,Ed−1 s.t. for all i = 0, . . . , d − 1 and all x ∈ Ei :

K (x ,Ej) = 1 for j = i + 1 (modd)

Otherwise (Xn) is aperiodic.
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Metropolis-Hastings algorithm

I (target) distribution f
I conditional density q (proposal of new position).

Let X 1 be arbitrary.
For t = 1, 2, . . . :

I Let Y t ∼ q(X t , ·)
I Let

X t+1 =

{
Y t with prob ρ(X t ,Y t)

X t with prob 1− ρ(X t ,Y t)

where ρ(x , y) = min
(
f (y)q(y ,x)
f (x)q(x ,y) , 1

)
Notes:

I f is only needed up to a normalising constant.

I the terms involving q cancel if proposal is symmetric around the
current position.

Axel Gandy MCMC 12
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Example - Space-Shuttle O-ring

I Explosion of the Space-shuttle Challenger caused by the failure
of an O-ring (a ring of rubber used as a sealant)

I Caused by unusually low temperatures (31◦ F)

I Data from previous flights:

Failure 1 1 1 1 0 0 0 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0
Temp 53 57 58 63 66 67 67 67 68 69 70 70 70 70 72 73 75 75 76 76 78 79 81

I Failure= blowby or erosion (diagnosed after the flight)

I More details: see Dalal et al. (1989).

Axel Gandy MCMC 13
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Example - Space-Shuttle O-ring - Model

I Logistic model:

P(Y = 1) =
exp(α + xβ)

1 + exp(α + xβ)

x =temperature

I prior:

π(α, β) =
1

b
eαe−e

α/b

(flat prior on β, exponential on log(α))
choose b st Eα=MLE of α.

Axel Gandy MCMC 14
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Space-Shuttle O-ring - Independent Proposal

Proposal for the Metropolis Hastings Algorithm

I exp(αprop) ∼ Exponential(1/b)

I βprop ∼ N(−0.2322, 0.1082)

I Realisation of the Markov chain:
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Prediction of Failure Probability
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Space-Shuttle O-ring - Random Walk Proposal

Proposal for the Metropolis Hastings Algorithm
I αprop = α + Za, Za ∼ N(0,

√
0.02d)

I βprop = β + Zb, Zb ∼ N(0,
√

d)

Acceptance prob simplifies: ρ(x , y) = min
(

f (y)q(y,x)
f (x)q(x,y) , 1

)
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Space-Shuttle O-ring - Random Walk Proposal (cont)

First 2000 steps:
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Space-Shuttle O-ring - Random Walk Proposal - Intercept
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Sufficient Condition for Stationary Densities

Definition
A Markov chain with transition kernel K satisfies the detailed balance
condition with the probability density function f if

K (x , y)f (x) = K (y , x)f (y) ∀x , y

Remarks

I K (x , y)f (x)=mass flowing from x to y .
K (y , x)f (y)=mass flowing from y to x .

I Detailed balance is (up to measure theoretic complications) equivalent
to “reversibility”:
A stationary Markov chain (Xn) is reversible if
(Xn+1|Xn+2 = x) ∼ (Xn+1|Xn = x).



Sufficient Condition for Stationary Densities

Definition
A Markov chain with transition kernel K satisfies the detailed balance
condition with the probability density function f if

K (x , y)f (x) = K (y , x)f (y) ∀x , y

Theorem
Suppose a Markov chain satisfies the detailed balance condition with
the pdf f . Then f is the invariant density of the chain.

Proof.
Let Xn ∼ f . Then ∀B:

P(Xn+1 ∈ B) =

∫
X

K (y ,B)f (y)dy =

∫
X

∫
B

K (y , x)f (y)dxdy

=

∫
X

∫
B

K (x , y)f (x)dxdy =

∫
B

∫
X

K (x , y)dy︸ ︷︷ ︸
=1

f (x)dx = P(Xn ∈ B)



Stationary Distribution of the Metropolis-Hastings Alg.

Theorem
Suppose

⋃
x∈supp f supp q(x , ·) ⊃ supp f . Then f is a stationary

distribution of the chain.

Proof.
Will verify the detailed balance condition
K (x , y)f (x) = K (y , x)f (y) ∀x , y .
Here,

K (x , y) = ρ(x , y)q(x , y) + (1− r(x))δx(y),

where r(x) =
∫
ρ(x , y)q(x , y)dy is the overall acceptance probability

at x and δx is the Dirac measure at x . Suffices to check

(a) ρ(x , y)q(x , y)f (x) = ρ(y , x)q(y , x)f (y)

(b) (1− r(x))δx(y)f (x) = (1− r(y))δy (x)f (y)

Both sides of (b)=0 for x 6= y ;
To see (a): ρ(x , y) = 1 or ρ(y , x) = 1
(Recall: ρ(x , y) = min

(
f (y)q(y,x)
f (x)q(x,y)

, 1
)

)



Ergodicity of the Metropolis Hastings Algorithm
Let (X t) be the Markov chain of a Metropolis Hastings algorithm.

I (X t) is f -irreducible if

q(x , y) > 0 for every (x , y)

Then (X t) is Harris-recurrent and the Ergodic theorem applies,
i.e. ∀h ∈ L1(f ):

lim
T→∞

1

T

T∑
t=1

h(X t) =

∫
h(x)f (x)dx a.s.

I If (X t) is also aperiodic then

lim
n→∞

‖
∫

Kn(x , ·)µ(dx)− f ‖TV = 0,

for every initial distribution µ, where Kn denotes the n step
transition kernel.

I (X t) is aperiodic if the probability of rejecting a step is positive
(i.e. P(X t = X t+1) > 0).



Introduction Markov Chains Metropolis Hastings Gibbs Sampling Reversible Jump Diagnosing Convergence Perfect Sampling Remarks

What is a good acceptance rate?

I Independent Proposal Distribution:
As close to 1 as possible
(ideally, I would like the proposal distribution to equal the
distribution to be simulated)

I Random Walk:
I too high: support of f is not explored quickly

In particular if the density is multimodal
I too low: waste of simulations (proposals outside the range of f )
I Heuristic: acceptance rate of 1/4 for high-dimensional models

and of 1/2 for models of dimension 1 or 2.
See Roberts et al. (1997).
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Adaptive Schemes

I Unrealistic to hope for a generic MCMC sampler that works in
every possible setting

I Problems: High dimension, disconnected support

I Problems of adaptive schemes (prior states of the Markov Chain
are used to tune e.g. the proposal distribution): Markov property
gets lost → loss of theoretical underpinning

I Article on theoretical underpinning of adaptive MCMC: e.g.
Andrieu & Moulines (2006)

I To be on the safe side:
I Use a burn-in period to tune parameters such as the proposal

distribution.
I The burn-in period should not contribute to

expectations/quantiles of the target distribution.
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Gibbs Sampler - Introduction

I Origin of the name “Gibbs sampling”:
Geman & Geman (1984), who brought Gibbs sampling into
statistics, used the method for a Bayesian study of Gibbs
random fields, which have their name from the physicist Gibbs
(1839-1903)

I Main idea:
I update components of the Markov Chain individually
I by sampling the component to be updated conditional on the

value of the other components.
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The Gibbs Sampler

Want to sample from the density f : Rp → [0,∞)
fj=conditional density of Xj |{Xi , i 6= j}
Let X 0 be some starting value.
For t = 0, 1, 2, . . . :

I X t+1
1 ∼ f1(x1|X t

2 , . . . ,X
t
p)

I X t+1
2 ∼ f2(x2|X t+1

1 ,X t
3 , . . . ,X

t
p)

I . . .

I X t+1
p ∼ fp(xp|X t+1

1 , . . . ,X t+1
p−1)
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Example - Truncated Normal

Want to sample from N(−3, 1) truncated to [0, 1], i.e.

f (x) ∝ exp

(
−(x + 3)2

2

)
I(0 ≤ x ≤ 1)

Consider the uniform distribution g on

A =
{

(x1, x2)′ : x1 ∈ [0, 1], 0 ≤ x2 ≤ f (x1)
}

f is the marginal density of the first component.
0.0 0.4 0.8

0.
00

0
0.

00
2

0.
00

4

x1

x 2

A

Gibbs sampler for g

I g1(x1|x2) ∝ I(0 ≤ x1 ≤ min(1,−3 +
√
−2 log x2))

I g2(x2|x1) ∝ I(0 ≤ x2 ≤ f (x1))
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Example - Truncated Normal
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Example - Truncated Normal
10 steps
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Example - Truncated Normal
Histogramm of X1

1,...,X1
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Gibbs-Sampler- Stationary Distribution

I Will show that f is stationary for each of the p steps
I WLOG consider the first step
I Need to show: If (X1,X2, . . . ,Xp) ∼ f and

X̃1 ∼ f1(x1|X2, . . . ,Xp) then (X̃1,X2, . . . ,Xp) ∼ f
I Let X−1 = (X2, . . . ,Xp), x−1 = (x2, . . . , xp).
I Let pA := P((X̃1,X2, . . . ,Xp) ∈ A).

pA =

∫ ∫
I((x̃1, x−1) ∈ A)f1(x̃1|x−1)dx̃1f (x)dx

I Using
∫

f (x)dx1 =
∫

f1(x1|x−1)f−1(x−1)dx1 = f−1(x−1),

pA =

∫ ∫
I((x̃1, x−1) ∈ A)f1(x̃1|x−1)dx̃1f−1(x−1)dx−1

=

∫ ∫
I((x̃1, x−1) ∈ A)f (x̃1, x−1)dx̃1dx−1 =

∫
I(x ∈ A)f (x)dx
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Gibbs-Sampler- Disconnected Support - Example
I Let D1 and D2 be discs in R2

with radius 1 and and centres
(1, 1) and (−1,−1)

I Consider the uniform distribution
on D1 ∪ D2

I Gibbs Sampler is not an
irreducible chain
(remains concentrated in the disc
it is started in)

I (transformation of coordinates to
x1 + x2 and x2 − x1 would solve
the problem)

−2 −1 0 1 2

−
2

−
1

0
1

2
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Gibbs Sampler - Some Theoretical Results

I If f satisfies the following positivity condition then the resulting
Gibbs sampler is f -irreducible.

f (i)(xi ) > 0∀i =⇒ f (x1, . . . , xp) > 0

(f (1), . . . , f (p) denote the marginal distributions)
I If a Gibbs sampler is

I f -irreducible with stationary distribution f and
I for every x the transition probability K (x , ·) is absolutely

continuous with respect to f

then the Gibbs sampler is Harris recurrent. (Tierney, 1994,
Corollary 1)

I (Recall: Harris recurrence implies the usual ergodicity results)
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BUGS software

I Bayesian inference Using Gibbs Sampling

I “flexible software for the Bayesian analysis of complex statistical
models using Markov chain Monte Carlo (MCMC) methods”

I Allows specification of Bayesian models in the BUGS language.
MCMC chain is constructed automatically.

I Original version: WinBUGS

I Open source version: OpenBUGS

I Similar: JAGS (based on C, hopefully more portable)
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Introduction

I A variable dimension model is a “model where one of the things
you do not know is the number of things you do now know”
(Peter Green)

I in other words: the dimension of the parameter space is not
fixed.

I can occur in model selection, checking, improvement, . . .
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Bayesian variable dimension model

I A Bayesian variable dimension model is defined as a collection of
models (k = 1, . . . ,K ),

Mk = {f (·|θk); θk ∈ Θk},

with a collection of priors on the parameters of these models,

πk(θk),

and a prior distribution ρk , k = 1, . . . ,K on the indices of these
models.

I Note: Θk may have different dimensions
I In this setting one can compute the posterior probability of

models, i.e.

p(Mk |y) =
ρk
∫

fk(y|θk)πk(θk)dθk∑
j ρj
∫

fj(y|θj)πj(θj)dθj
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Reversible Jump Algorithm

I Want: proper framework for designing moves between models
Mk

I Construction of a reversible kernel K on Θ =
⋃

k{k} ×Θk

I Main ideas of Green (1995):
only consider moves between pairs of models.
construct “dimension matching” moves.
accept a move with probability similiar to the
Metropolis-Hastings algorithm
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Toy Example

(from a tutorial written by Peter Green, see
http://www.maths.bris.ac.uk/~mapjg/slides/tdtut4.pdf)

I x ∈ R ∪ R2

I π(x) is a mixture:
I x is U(0, 1) with probability p1

I x is uniform on the triangle 0 < x2 < x1 < 1 with probability
1− p1.

I Three moves:

(1) within R: x → U(max(0, x − ε),min(1, x + ε))
(2) within R2: (x1, x2)→ (1− x2, 1− x1)
(3) between R and R2

If x ∈ R: choose moves (1), (3) with probability 1− r1, r1
If x ∈ R2: choose moves (2), (3) with probability 1− r2, r2
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Toy Example (cont)

I Trans-dimensional move [(3)]:
I From x ∈ R to (x1, x2) ∈ R2: draw u from U(0, 1), propose (x , u)

Accept with probability

α = min(1,
2(1− p1)r2

p1r1
)I(u < x)

I From (x1, x2) ∈ R2 to x ∈ R: propose x = x1

α = min(1,
p1r1

2(1− p1)r2
)
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Toy Example - Results

p1 = 0.2, r1 = 0.7, r2 = 0.4, ε = 0.3
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Diagnosing Convergence

I To diagnose convergence to the stationary distribution: plot the
parameter (“trace plots”).

I Start multiple chains and compare the “within chain variance”
to the variance when all chains are thrown together.

I Fundamental problem is mixing - you will never see if you have
not explored the entire parameter space.

I No “magic” solution

I Even if you have (somehow) established that the chain is
exploring the entire parameter space, there is still the issue of
convergence - how long should you run the chain(s)?
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Confidence intervals for standard Monte Carlo simulations

I Standard CLT: Suppose X ,X1,X2, . . . iid with 0 < Var(X ) <∞.
Then

√
n

(
1

n

n∑
i=1

Xi − E(X )

)
d→ N(0,Var(X )) (n→∞)

I Var(X ) can be reasonably well estimated by the sample variance

S2 =
1

n − 1

n∑
i=1

Xi −
1

n

n∑
j=1

Xj

2

I Thus an asymptotic 1− α confidence interval for E(X ) is[
1

n

n∑
i=1

Xi −
1√
n

cS ,
1

n

n∑
i=1

Xi +
1√
n

cS

]
where c is such that Φ(1− c) = α

2 .
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CLT for Markov chains

I Suppose X1,X2, . . . is a stationary Markov chain. Then, under
suitable conditions,

√
n

(
1

n

n∑
i=1

Xi − E(X )

)
d→ N(0, σ2) (n→∞)

where

σ2 = Var(Xi ) + 2
∞∑
k=1

Cov(Xi ,Xi+k). (1)

Limiting variance is more complicated.
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Batch Means
I Markov chain X1,X2, . . . . Interested in µ = E(g(X )). Assume

we want to use the estimator µ̂ = 1
n

∑n
i=1 g(Xi ).

I

Assuming b divides n, let µ̂k = 1
b

∑kb
i=(k−1)b+1 Xi .

Then µ̂ = 1
n/b

∑n/b
k=1 µ̂k .

I µ̂1, µ̂2, . . . is again a Markov chain with a similar CLT.

I Pragmatic approach: hope that the autocovariance is much
smaller, so that µ̂1, µ̂2, . . . can be treated as an iid sample.

I Then construct confidence intervals using 1
n/bS2

b as estimate of

the variance of µ̂, where S2
b is the sample variance of

µ̂1, . . . , µ̂n/b.

I Note: 1
n/bS2

b tends to underestimate the variance of µ̂ (as we are

ignoring terms in (1)).
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Batch Means - Example AR(1)

I Xi = 0.9 · Xi−1 + εi , εi ∼ N(0, 1) independently,
i = 1, . . . , 10000.
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Batch Means - Example AR(1)

I Xi = 0.9 · Xi−1 + εi , εi ∼ N(0, 1) independently,
i = 1, . . . , 10000.
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Batch Means - Example AR(1)

I Xi = 0.9 · Xi−1 + εi , εi ∼ N(0, 1) independently,
i = 1, . . . , 10000.
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Comments

I Bias-variance trade-off (small batch size: bias, underestimation
of the variance, large batch size: variance).

I The batches can also be taken to be overlapping.

I Other approaches try to estimate the coefficients in (1) directly,
see e.g. (Brooks et al., 2011, Section 1.10.2)
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Perfect Sampling - Introduction

I So far: run Markov chain forward

I downside: converge to the stationary distribution only
asymptotically

I Perfect Sampling: get a sample from precisely the stationary
distribution.

I Methods in this section are not (yet?) in mainstream use
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Example - Falling Leaves

I observe the square (0,1)x(0,1)

I leave = circle of radius r=0.35

I centre of falling leaves follows a Poisson distribution (will sample
it on (-r,1+r)x(r,1+r))

I Markov chain with state space: leaves seen from the top

I Interested in obtaining a sample from the stationary distribution.
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Comments

I Not clear how long to run the chain.

I At best, we can get a sample from an approximation to the
distribution of interest.

I This is essentially a problem for all MCMC algorithms so far.
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Coupling From the Past (CFTP)

I Propp & Wilson (1996), generates realisations from the
stationary distribution of a Markov chain

I The transition of Markov chains can be represented as

Xt+1 = ψ(Xt ,Ut)

where Ut are iid.

I Suppose (Xt) is a Markov Chain with stationary distribution f .
I Algorithm:

I Generate U−1,U−2, . . . .
I Let ψt(·) = ψ(·, ut) and

φt(x) = ψ−t(ψ−t+1(. . . ψ−1(x) . . . )

I Determine T such that φT is constant by looking at
φ1, φ2, φ4, φ8, . . .

I Take φT (x) (for any x) as a realisation from f .
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Using Monotonicity Structure

I Computationally intensive to verify if φT is constant
I Suppose ψ(x , u) is monotonic in x, i.e.:

I there exists an ordering � on the state space X such that
x ≤ y =⇒ ψ(x , u) ≤ ψ(y , u).

I there exists a largest element x (and a smallest element x) of X
wrt �

I Then it suffices to check if the chains started at x and x at time
−T have coupled before time t, i.e. if φT (x) = φT (x).
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Forward Coupling

I Problem with Coupling from the Past:
Algorithm cannot be interrupted

I Fill (1998) Forward-backward coupling algorithm:

I Main idea: Chain is run backward from a fixed time horizon T
(in the future) and an arbitrary starting value XT

to time 0 → X 0.

I If coupling has occurred between 0 and T then X0 is the sample
otherwise increase T and begin again
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Some Remarks

I MCMC not straightforward to parallelise - approaches
I Could use parallel chains
I Could use the conditional structure of the statistical model to

parallelise the individual MCMC steps

Can use parallel chains to facilitate jumps between different
modes of the target density.

I Recent extensive treatment of MCMC methods: Brooks et al.
(2011)
(many examples and useful lists of references)

I Overview over R-packages for Bayesian computations:
http://cran.r-project.org/web/views/Bayesian.html
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Topics in the coming lectures:

I Bootstrap

I Particle Filtering
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