Advanced Computational Methods in Statistics: Lecture 2 Optimisation

Axel Gandy

Department of Mathematics Imperial College London http://www2.imperial.ac.uk/~agandy

London Taught Course Centre for PhD Students in the Mathematical Sciences Autumn 2014

Lecture 2 - Optimisation

- Part 1 Deterministic Optimisation
- Part 2 EM algorithm
- Part 3 LASSO and LARS
- Part 4 NP-complete Problems
- Part 5 Stochastic Approximation

Part I

Deterministic Optimisation

Introduction

Local Search Methods

Comments

Simulation study

Introduction

- $f: A \to \mathbb{R}, A \subset \mathbb{R}^d$.
- ▶ Goal: Find $\mathbf{x}^* \in \mathbb{R}^d$ such that

$$f(\mathbf{x}^*) = \min_{\mathbf{x} \in A} f(\mathbf{x})$$

- Example: finding the maximum likelihood estimator.
- ► Can have side conditions: $g: A \to \mathbb{R}^q$ some function. Want to

Explicit solutions: Lagrange Multipliers.
 With inequality constraints: Kuhn-Tucker conditions.

Introduction Local Search Methods Comments Simulation study

Local Search Methods - No Side Conditions

- ▶ Main idea: create a sequence x_0, x_1, x_2, \ldots approximations to x^* . Hopefully $x_n \to x^*$ as $n \to \infty$.
- Choice of algorithm depends on how many derivatives of f are available. Some Examples:

no derivatives: Nelder-Mead: works with d+1 points that move towards x^* and then contract around it.

gradient ∇f : Gradient descent:

$$x_n = x_{n-1} - \epsilon_n \nabla f(x_{n-1})$$

other methods: conjugate gradient, ... gradient ∇f +Hessian H: Newton's Method:

$$x_n = x_{n-1} - H(f, x_{n-1})^{-1} \nabla f(x_{n-1})$$

Typically: the more derivatives are available the better the convergence rate.

- ▶ Global convergence only guaranteed if *f* is convex.
- If global convergence cannot be guaranteed, the very least one should do is use several starting values.

Optimisation with Side Conditions

$$\underset{\mathbf{x} \in A}{\text{minimise}}_{\mathbf{x} \in A} f(\mathbf{x}) \text{ subject to } g(\mathbf{x}) = 0$$

- ▶ f linear, g linear: "linear programming", Simplex algorithm
- ► f quadratic, g linear: quadratic programming
- more general structure: sequential quadratic programming algorithms may work: idea: approximate the problem locally by a quadratic programming problem. (implemented e.g. in the NAG library)
- More heuristic approach: put side condition into objective function, i.e. minimise $f(x) + \lambda (g(x))^2$ for some large $\lambda > 0$.

Comments

Optimisation (in particular with side conditions and non-convex)
 can be a tough problem

- Local search algorithms are not the only algorithms many more approaches (simulated annealing, random optimisation, genetic optimisation)
- Many solutions have been developed that work well for specific problems.
- Try to use implementation of algorithms written by experts!
- ► Useful resource: Decision Tree for Optimisation Software http://plato.asu.edu/guide.html

Simulation study of various optimization algorithms

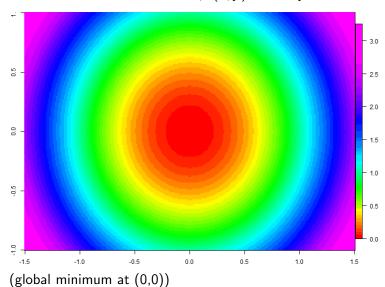
Various algorithms implemented in optim() in R:

- Nelder-Mead: a simplex-based method.
- ► BFGS: quasi-Newton method (BroydenFletcherGoldfarbShanno method)
- ► CG: a conjugate gradient method.
- ► L-BFGS-B: an algorithm that would allow bounds on the parameters.
- Simulated annealing with default settings.
- Simulated annealing with more steps and slower cooling.

Applied to 3 functions.

Example 1 - quadratic function

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = x^2 + y^2$$



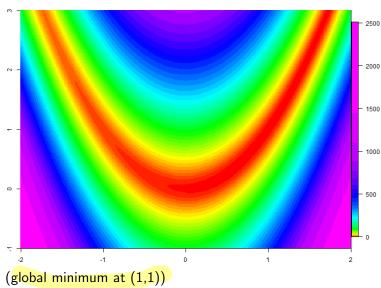
Applying standard R algorithms to the quadratic function

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	1	1	1	1	1	1
0%	2.73e-09	7.24e-28	7.42e-15	1.53e-41	9e-07	1.01e-07
25%	1.14e-07	1.61e-24	2.13e-14	3.96e-40	4.19e <mark>-05</mark>	2.47 <mark>e-0</mark> 6
50%	2.46e-07	1.55e-23	3.76e-14	7.69e-40	8.21e- <mark>05</mark>	7.54e <mark>-0</mark> 6
75%	5.56e-07	7.11e-23	5.27e-14	1.37e-39	0.000 <mark>2</mark>	1.4e- <mark>05</mark>
100%	5.04e-06	1.86e-21	8.91e-13	2.72e-39	0.000896	4.84 <mark>e-0</mark> 5
neval	65.8	9.66	21.8	4.24	1e+04	1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10]. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Example 2 - Rosenbrock Banana function

$$f: \mathbb{R}^2 \to \mathbb{R}, f(x, y) = (1 - x)^2 + 100(y - x^2)^2$$

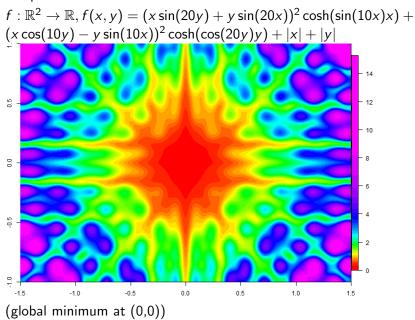


Applying standard R algorithms to the Banana function

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	1	0.85	0.01	0.99	1	1
0%	4.32e-08	9.93e-11	0.000187	1.98e-10	1.76e-06	8.25e-07
25%	3.8e-05	2.93e-08	0.0765	3.03e-08	0.000194	9.81e-06
50%	0.000747	3.95e-08	0.203	3.99e-08	0.000444	2.18e-05
75%	0.0489	4e-08	3.66	4e-08	0.00105	4.58e-05
100%	1e + 06	1e + 06	1e + 06	1e + 06	2.36	0.000199
neval	129	111	253	54	1e+04	1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10]. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Example 3



Applying standard R algorithms to Example 3

	N-M	BFGS	CG	L-BFGS-B	SANN1	SANN2
Conv	0.99	1	0.21	0.78	1	1
0%	2.4e-08	3.59e-20	4.57e-10	1.35e-14	0.00125	0.000241
25%	6.69	3.06e-18	2.79	8.25	0.0123	0.00148
50%	9.74	6.75	7.99	11.5	6.01	0.003
75%	13.4	11.9	11.7	29.4	10.9	0.00427
100%	181	263	269	178	22.7	18.4
neval	103	65.1	413	41.2	1e+04	1e+05

Table: Started from 100 different starting points in [-10,10]x[-10,10]. Conv=Proportion of successful convergence indicated; Quantiles of f(minimizer); neval=average number of function evaluations.

Comments

- Functions that are "nice" (no local minima, maybe even convex): standard numerical algorithms work best, the more derivatives are used the better.
- Functions with local minima: Need to add noise to avoid getting trapped (needs tuning)
- General advice:
 - Use several starting values
 - Plot function (if possible)

Part II

The EM Algorithm

Introduction

Example - Mixtures

Theoretical Properties

EM Algorithm - Introduction

- Expectation-Maximisation algorithm; two steps:
 - ► E-step
 - M-Step
- General-purpose algorithm for maximum likelihood estimation in incomplete data problems.
- ▶ Main reference: Dempster et al. (1977)
- ► According to scholar.google.com: cited > 14000 times! (narrowly beating e.g. Cox "Regression Models and Life Tables" with roughly 13500 citations) [citation count on 19/1/2009]
- ► Most of the material in this chapter is based on McLachlan & Krishnan (2008). An overview article is Ng et al. (2004).

Imperial College London

Situations in which the EM algorithm is applicable

- Incomplete data situations such as
 - missing data
 - truncated distributions
 - censored or grouped observations
- Statistical models such as
 - random effects
 - mixtures
 - convolutions
 - ► latent class/variable structures
 - **.** . . .
- ► Even if a problem appears not to be an incomplete data problem
 - writing it as such a problem can sometimes simplify its analysis (by simplifying the likelihood).

The EM algorithm - Notation

y observed data, incomplete data (corresponding r.v.: Y)

 $g(\cdot, \psi)$ density of ${f Y}$

 ψ unknown parameter vector

Likelihood $L(\psi) := g(\mathbf{y}, \psi)$.

Want to find the MLE, i.e. maximise L.

z missing data (corresponding r.v.: **Z**)

x = (y, z) complete data (corresponding r.v.: X)

 $g_c(\cdot; \psi)$ density of **X**

Note: $g(\mathbf{y}, \psi) = \mathsf{E}[g_c(\mathbf{Y}, \mathbf{Z}; \psi) | \mathbf{Y} = \mathbf{y}]$

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathbb{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of \mathbf{y} , g_c density of \mathbf{x} , $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$

The EM-algorithm

- ▶ Let ψ^0 be some initial value for ψ .
- ▶ For k = 0, 1, ...

E-step Calculate $Q(\psi, \psi^k)$, where

$$Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$$

M-step

$$\psi^{k+1} = \operatorname{argmax}_{\psi} Q(\psi, \psi^k)$$

▶ Employ some convergence criterion (e.g. based on log $g_c(\mathbf{x}; \psi^k)$)

Note

$$Q(\psi, \psi^k) = \int \log g_c(\mathbf{y}, \mathbf{z}; \psi) k(\mathbf{z}|\mathbf{y}; \psi) d\mathbf{z},$$

where $k(\mathbf{z}|\mathbf{y};\psi) = g_c(\mathbf{y},\mathbf{z};\psi)/g(\mathbf{y};\psi)$ is the conditional density of \mathbf{z} given $\mathbf{Y} = \mathbf{y}$.

 ${f y}$ observed, ${f z}$ missing, ${f x}=({f y},{f z}),\ Q(\psi,\psi^k)={f E}[\log g_c({f X};\psi)|{f Y}={f y};\psi^k]$ ${f g}$ density of ${f y},\ g_c$ density of ${f x},\ k=g_c/g$ density of ${f z}|{f y}$

The EM-algorithm

- Let ψ^0 be some initial value for ψ .
- ▶ For k = 0, 1, ...

E-step Calculate $Q(\psi, \psi^k)$, where

$$Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathsf{X}; \psi) | \mathsf{Y} = \mathsf{y}; \psi^k]$$

M-step

$$\psi^{k+1} = \operatorname{argmax}_{\psi} Q(\psi, \psi^k)$$

▶ Employ some convergence criterion (e.g. based on log $g_c(\mathbf{x}; \psi^k)$)

Note:

$$Q(\psi, \psi^k) = \int \log g_c(\mathbf{y}, \mathbf{z}; \psi) k(\mathbf{z}|\mathbf{y}; \psi) d\mathbf{z},$$

where $k(\mathbf{z}|\mathbf{y}; \psi) = g_c(\mathbf{y}, \mathbf{z}; \psi)/g(\mathbf{y}; \psi)$ is the conditional density of \mathbf{z} given $\mathbf{Y} = \mathbf{y}$.

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z}), \ Q(\psi, \psi^k) = \mathbb{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of $\mathbf{y}, \ g_c$ density of $\mathbf{z}, \ k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$

Monotonicity of the EM Algorithm

- ► Then $\log g(\mathbf{y}; \psi) = \log(g_c(\mathbf{x}; \psi)) \log k(\mathbf{x}|\mathbf{y}; \psi)$.
- ▶ Take expectations with density $k(\mathbf{x}|\mathbf{y};\psi)$

$$\log g(\mathbf{y}; \psi) = Q(\psi, \psi^k) - \underbrace{\mathsf{E}[\log k(\mathbf{X}|\mathbf{y}; \psi)|\mathbf{Y} = \mathbf{y}; \psi^k]}_{=:H(\psi, \psi^k)}$$

► Thus

$$\log g(\mathbf{y}; \psi^{k+1}) - \log g(\mathbf{y}; \psi^{k}) =$$

$$= \underbrace{\left(Q(\psi^{k+1}, \psi^{k}) - Q(\psi^{k}, \psi^{k})\right)}_{\geq 0 \text{ (Def EM)}} + \underbrace{\left(H(\psi^{k}, \psi^{k}) - H(\psi^{k+1}, \psi^{k})\right)}_{\geq 0 \text{ (next slide)}}$$

▶ Hence, $\log g(\mathbf{v}; \psi^k) \nearrow \text{as } k \to \infty$.

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z}), \ Q(\psi, \psi^k) = \mathbb{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of **y**, g_c density of $\mathbf{z}, \ k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$

Monotonicity of the EM Algorithm

- ► Then $\log g(\mathbf{y}; \psi) = \log(g_c(\mathbf{x}; \psi)) \log k(\mathbf{x}|\mathbf{y}; \psi)$.
- ▶ Take expectations with density $k(\mathbf{x}|\mathbf{y};\psi)$

$$\log g(\mathbf{y}; \boldsymbol{\psi}) = Q(\boldsymbol{\psi}, \boldsymbol{\psi}^k) - \underbrace{\mathsf{E}[\log k(\mathbf{X}|\mathbf{y}; \boldsymbol{\psi})|\mathbf{Y} = \mathbf{y}; \boldsymbol{\psi}^k]}_{=:H(\boldsymbol{\psi}, \boldsymbol{\psi}^k)}$$

Thus

$$\log g(\mathbf{y}; \psi^{k+1}) - \log g(\mathbf{y}; \psi^{k}) =$$

$$= (\underbrace{Q(\psi^{k+1}, \psi^{k}) - Q(\psi^{k}, \psi^{k})}_{\geq 0 \text{ (Def EM)}}) + (\underbrace{H(\psi^{k}, \psi^{k}) - H(\psi^{k+1}, \psi^{k})}_{\geq 0 \text{ (next slide)}})$$

▶ Hence, $\log g(\mathbf{y}; \psi^k) \nearrow \text{as } k \to \infty$.

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z})$, $Q(\psi, \psi^k) = \mathbb{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of \mathbf{y} , g_c density of \mathbf{x} , $k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$

Monotonicity of the EM Algorithm (cont)

- ► $H(\psi, \psi^k) = \mathbb{E}[\log k(\mathbf{X}|\mathbf{y}; \psi)|\mathbf{Y} = \mathbf{y}; \psi^k]$ is maximised at $\psi = \psi^k$.
- ► Indeed,

$$H(\psi^{k}, \psi^{k}) - H(\psi, \psi^{k}) = \mathbb{E}[-\log \frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} | \mathbf{Y} = \mathbf{y}; \psi^{k}]$$

$$\geq -\log \mathbb{E}[\frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} | \mathbf{Y} = \mathbf{y}; \psi^{k}] \quad \text{(Jensen's inequality)}$$

$$= -\log \int \frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} k(\mathbf{X}|\mathbf{y}; \psi^{k}) dx$$

$$= -\log \int k(\mathbf{x}|\mathbf{y}; \psi) d\mathbf{x} = -\log(1) = 0$$

► Thus $H(\psi^k, \psi^k) - H(\psi^{k+1}, \psi^k) \ge 0$.

 Imperial College
 Axel Gandy
 The EM Algorithm

 London
 The EM Algorithm

y observed, **z** missing, $\mathbf{x} = (\mathbf{y}, \mathbf{z}), \ Q(\psi, \psi^k) = \mathbb{E}[\log g_c(\mathbf{X}; \psi) | \mathbf{Y} = \mathbf{y}; \psi^k]$ g density of $\mathbf{y}, \ g_c$ density of $\mathbf{x}, \ k = g_c/g$ density of $\mathbf{z}|\mathbf{y}$

Monotonicity of the EM Algorithm (cont)

- ► $H(\psi, \psi^k) = \mathbb{E}[\log k(\mathbf{X}|\mathbf{y}; \psi)|\mathbf{Y} = \mathbf{y}; \psi^k]$ is maximised at $\psi = \psi^k$.
- ► Indeed.

$$H(\psi^{k}, \psi^{k}) - H(\psi, \psi^{k}) = \mathbb{E}[-\log \frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} | \mathbf{Y} = \mathbf{y}; \psi^{k}]$$

$$\geq -\log \mathbb{E}[\frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} | \mathbf{Y} = \mathbf{y}; \psi^{k}] \quad \text{(Jensen's inequality)}$$

$$= -\log \int \frac{k(\mathbf{X}|\mathbf{y}; \psi)}{k(\mathbf{X}|\mathbf{y}; \psi^{k})} k(\mathbf{X}|\mathbf{y}; \psi^{k}) dx$$

$$= -\log \int k(\mathbf{x}|\mathbf{y}; \psi) d\mathbf{x} = -\log(1) = 0$$

► Thus $H(\psi^k, \psi^k) - H(\psi^{k+1}, \psi^k) \ge 0$.

The inequality for h is a special form of the following general inequality:

Let X be a r.v. with density g. Let f be any other density. Then

$$\frac{E[\log(f(X))]}{E[\log(g(X))]}$$

Proof: Jensen's inequality.

Generalised EM algorithm(GEM)

- ▶ The M-step may not have a close-form solution.
- ▶ It may not be feasible to find a global maximum of $Q(\cdot, \psi^k)$
- Replace M-step by:

choose ψ^{k+1} such that

$$Q(\psi^{k+1},\psi^k) \geq Q(\psi^k,\psi^k)$$

Mixture Distribution

- Consider a mixture distribution
 - $\psi_1, \dots, \psi_d \ge 0$, mixing proportions, $\sum_{i=1}^d \psi_i = 1$.
 - f_1, \ldots, f_d component densities.

With probability ψ_i sample from f_i .

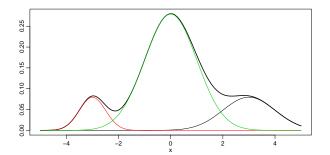
Resulting density:

$$f(x) = \sum_{i=1}^{d} \psi_i f_i(x)$$

We will assume that f_1, \ldots, f_d are known, but that $\psi = (\psi_1, \ldots, \psi_d)$ is unknown.

Mixture of Normals

- ▶ d = 3
- $f_1 = pdf of N(3,1)$
- ▶ $f_2 = pdf of N(-3, 0.5)$
- $f_3 = pdf of N(0,1)$
- $\psi = (0.2, 0.1, 0.7)$



- Let Y_1, \ldots, Y_n be an iid sample from the mixture distribution.
- ▶ The likelihood of the incomplete data is

$$g(\mathbf{y}; \boldsymbol{\psi}) = \prod_{i=1}^{n} \sum_{j=1}^{d} \psi_{j} f_{j}(y_{i})$$

- ► Missing data: Z_{ij} indicator variables of chosen component
- Complete density:

$$g_c(\mathbf{y}, \mathbf{z}; \psi) = \prod_{i=1}^n \prod_{j=1}^d (\psi_j f_j(y_i))^{z_{ij}}$$

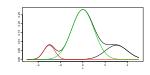
Hence, the log-likelihood for the full data is

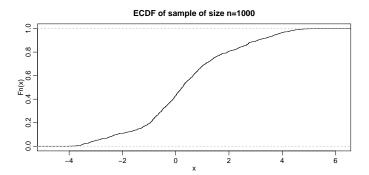
$$\log g_c(\mathbf{y}, \mathbf{z}; \boldsymbol{\psi}) = \sum_{i=1}^n \sum_{j=1}^d z_{ij} \log(\psi_j) + C,$$

where C does not depend on ψ .

 Imperial College
 Axel Gandy
 The EM Algorithm

A sample





$$Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \psi); \mathbf{y}, \psi^k] = \sum_{i=1}^n \sum_{j=1}^d \log(\psi_j) \, \mathsf{E}[z_{ij}; \mathbf{y}, \psi^k] + C,$$

where

$$\mathsf{E}[z_{ij};\mathbf{y},\boldsymbol{\psi}^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: a_{ij}$$

We want to maximise

$$Q(\psi, \psi^k) = \sum_{i=1}^d \left(\sum_{i=1}^n a_{ij}\right) \log(\psi_i)$$

subject to $\sum \psi_j = 1$. Using e.g. Lagrange multipliers and $\sum_j a_{ij} = 1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, a_{ij}$$

Note: a_{ij} depends on ψ^k

Imperial College Axel Gandy The EM Algorithm

$$Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \psi); \mathbf{y}, \psi^k] = \sum_{i=1}^n \sum_{j=1}^d \log(\psi_j) \, \mathsf{E}[z_{ij}; \mathbf{y}, \psi^k] + C,$$

where

$$\mathsf{E}[z_{ij};\mathbf{y},\psi^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: a_{ij}$$

We want to maximise

$$Q(\psi, \psi^k) = \sum_{i=1}^d (\sum_{j=1}^n a_{ij}) \log(\psi_j)$$

subject to $\sum \psi_j = 1$. Using e.g. Lagrange multipliers and $\sum_j a_{ij} = 1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, \alpha$$

Note: a_{ij} depends on ψ^k

Imperial College Axel Gandy The EM Algorithm

$$Q(\psi, \psi^k) = \mathsf{E}[\log g_c(\mathbf{y}, \mathbf{z}; \psi); \mathbf{y}, \psi^k] = \sum_{i=1}^n \sum_{i=1}^d \log(\psi_i) \, \mathsf{E}[z_{ij}; \mathbf{y}, \psi^k] + C,$$

where

$$\mathsf{E}[z_{ij};\mathbf{y},\psi^k] = \frac{\psi_j^k f_j(y_i)}{\sum_{\nu} \psi_{\nu}^k f_{\nu}(y_i)} =: \mathsf{a}_{ij}$$

We want to maximise

$$Q(\psi,\psi^k) = \sum_{i=1}^d (\sum_{j=1}^n a_{ij}) \log(\psi_j)$$

subject to $\sum \psi_j=1$. Using e.g. Lagrange multipliers and $\sum_j a_{ij}=1$ one can see that the optimum is at

$$\psi_j^{k+1} = \frac{1}{n} \sum_{i=1}^n a_{ij}, \quad j = 1, \dots, d$$

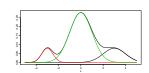
Note: a_{ii} depends on ψ^k

Imperial College Axel Gandy The EM Algorithm

Mixture of Normals

Applying the EM algorithm

k	ψ_1^k	ψ_2^k	ψ_{3}^{k}	
1	0.333	0.333	0.333	
2	0.261	0.115	0.624	
3	0.225	0.097	0.678	
4	0.216	0.094	0.69	
5	0.214	0.094	0.692	
6	0.213	0.094	0.693	
7	0.213	0.094	0.693	
8	0.213	0.094	0.693	
9	0.213	0.094	0.693	
10	0.213	0.094	0.693	



Convergence Results

- We have already seen that $L(\psi^k)$ is increasing in k.
- ▶ Thus, if L is bounded from above, $L(\psi^k)$ converges to some L^* .
- In almost all applications, L^* is a stationary value, i.e. $L^* = L(\psi^*)$ for some ψ^* such that

$$\frac{\partial L(\boldsymbol{\psi})}{\partial \boldsymbol{\psi}}|_{\boldsymbol{\psi} = \boldsymbol{\psi}^*} = \mathbf{0}$$

- ▶ Want L^* to be a global maximum.
- ► However, general theorems will only guarantee that *L** is a stationary point or a local maximum.
- There are some theorems that ensure convergence to a global maximum (assuming unimodality of *L*).
- ► Main reference for convergence results: Wu (1983). (see also McLachlan & Krishnan (2008))

EM-Algorithm - Some Warnings

- ► There are (pathological?) examples, where the (Generalised) EM-algorithm does not work as expected, e.g. where there may
 - convergence to a saddle point,
 - convergence to a local MINIMUM,
 - $L(\psi^k)$ converges, but ψ^k does not.

(see (McLachlan & Krishnan, 2008, Section 3.6))

Don't trust the output of the EM result blindly!
The very least you can do is try using different starting values.

Comments

- If the E-step cannot be computed analytically then Monte-Carlo techniques can be used. The resulting algorithm is often called "MCEM" algorithm.
 - MCMC techniques (e.g. Gibbs sampling) can come into play here.
- For an overview of theoretical work concerning the convergence rate of the EM-algorithm see (McLachlan & Krishnan, 2008, Chapter 4).

Part III

LASSO and related algorithms

LASSO

Penalised Regression

LARS algorithm

Comments

Ordinary least squares (OLS)

Linear Model:

$$\mathbf{Y} = X\boldsymbol{\beta} + \boldsymbol{\epsilon}$$

Y vector of responses (n-dimensional)

 $X \in \mathbb{R}^{n \times p}$ matrix of covariates

 $\beta \in \mathbb{R}^p$ vector of regression coefficients (unknown)

$$\epsilon$$
 vector of errors, $\mathsf{E}\,\epsilon=\mathbf{0}$, $\mathsf{Cov}\,\epsilon=\sigma^2\mathit{I}_n$

▶ Classical approach (if n > p): $oldsymbol{eta}$ is chosen as minimiser of the Sum of squares

$$S(\beta) = \|\mathbf{Y} - X\beta\|^2 = \sum_{i=1}^n (Y_i - (X\beta)_i)^2,$$

where
$$\|{\bf a}\|^2 = \sum_i a_i^2$$
.

Many modern datasets (e.g. microarrays): high-dimensional covariates, even $n \ll p$ (large p small n) $\Rightarrow \hat{\beta}$ is not uniquely identified!

Lasso

Lasso ('least absolute shrinkage and selection operator') (Tibshirani, 1996)

 $\hat{\beta}$ solution of

 $\left\{ \left\| \mathbf{Y} - X \boldsymbol{\beta} \right\|_2^2
ightarrow \mathsf{min} \\ \sum_{i=1}^d |eta_i| \le c$

where $c \in \mathbb{R}$ is a constant.

Remark:

Instead of side condition, can use L_1 -penalty

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda \sum_{i=1}^d |\beta_i| \to \min$$

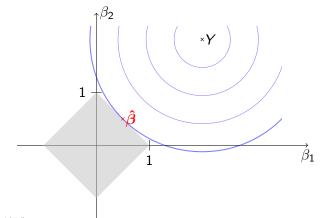
with a constant $\lambda > 0$.

Example:
$$\binom{Y_1}{Y_2} = \binom{1}{0} \binom{1}{0} \binom{\beta_1}{\beta_2} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$

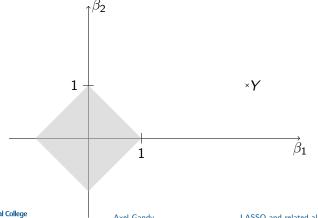
$$1 \stackrel{\uparrow^{\beta_2}}{-}$$

4 🗇 ▶

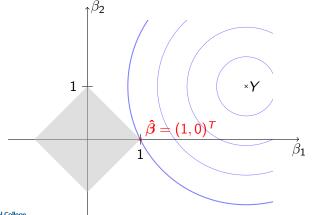
Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c=1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$



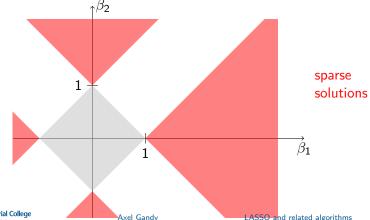
Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$



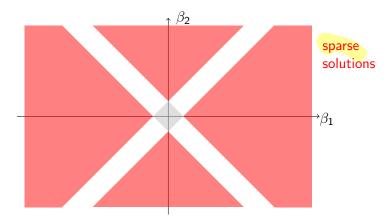
Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c=1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$



Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$



Example:
$$\begin{pmatrix} Y_1 \\ Y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} \beta_1 \\ \beta_2 \end{pmatrix} + \epsilon$$
. Using $c = 1$,
$$\begin{cases} (Y_1 - \beta_1)^2 + (Y_2 - \beta_2)^2 \to \min \\ |\beta_1| + |\beta_2| \le 1 \end{cases}$$



Penalised Regression

add regularity conditions on β :

$$p(\beta) \le t$$
 for a constant t

Examples:

- $\triangleright p(\beta) = \|\beta\|_0 = \frac{\#\{i : \beta_i \neq 0\} \text{ (best subset selection)}}{}$
- $\triangleright p(\beta) = \|\beta\|_1 = \sum_{i=1}^p |\beta_i|$ (LASSO, 'least absolute shrinkage and selection operator', see Tibshirani (1996))
- $p(\beta) = \|\beta\|_2^2 = \sum_{i=1}^p |\beta_i|^2$ (ridge regression)
- ▶ Bridge Regression families of penalties, e.g.:

$$p_d(\beta) = \|\beta\|_2^d = \frac{\sum_{i=1}^p |\beta_i|^d}{\text{where } 0 \leq d \leq 2}$$

elastic net

Thus overall:

$$S(\beta) \to \min$$
 subject to $p(\beta) \le t$

Alternatively: For some constant λ ,

$$S(oldsymbol{eta}) + \lambda p(oldsymbol{eta})
ightarrow \min_{\mathsf{LASSO} \; \mathsf{and}}$$

Finding the Solution of Penalised Regression

(losel for solution exists

- ► Best subset regression: NP hard problem
- Convex optimisation problem for e.g. LASSO, Ridge → standard optimisation techniques could be used to find a solution.
- ▶ LARS/LASSO algorithm: faster algorithm for $p(\beta) = \sum_{j=1}^{p} |\beta_j|$.
- ▶ How to choose the threshold t (or λ)? Use cross-validation.

Comments

Least Angle Regression

- Introduced in Efron et al. (2004).
- Efficient stepwise algorithm.
- ► LASSO modification of the LARS algorithm: generates LASSO solutions for all thresholds t.

LASSO

Assumptions

Will assume that

response has mean 0, i.e.

$$\sum_{i=1}^n Y_i = 0$$

covariates have mean 0 and length 1, i.e.

$$\sum_{i=1}^{n} X_{ij} = 0$$
 and $\sum_{i=1}^{n} X_{ij}^{2} = 1$ for $j = 1, \dots, p$

LARS algorithm

• . . .

London

Least Angle Regression (Efron et al., 2004)

A rough description:

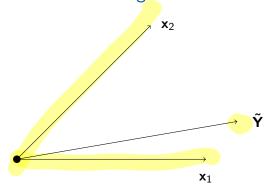
Let $\mathbf{x}_1, \ldots, \mathbf{x}_p$ be the predictors, i.e. the columns of X.

▶ Start with all coefficient vectors equal to 0, i.e.

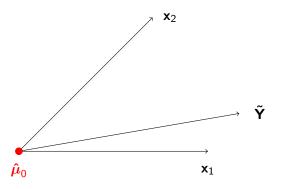
$$\beta_1=0,\ldots,\beta_p=0$$

- ► Let A be the set of covariates that are most correlated with the current residual (initially the residual is the response).
- $Initially, \ \mathcal{A} = \{\mathbf{x}_{j_1}\}.$
- ▶ take the largest step possible in the direction of \mathbf{x}_{j_1} until another predictor \mathbf{x}_{j_2} enters \mathcal{A}
- ▶ continue in the direction equiangular between \mathbf{x}_{j_1} and \mathbf{x}_{j_2} until a third predictor \mathbf{x}_{j_3} enters \mathcal{A}
- ▶ continue in the direction equiangular between \mathbf{x}_{j_1} , \mathbf{x}_{j_2} , \mathbf{x}_{j_3} until a fourth predictor \mathbf{x}_{i4} enters the most correlated set

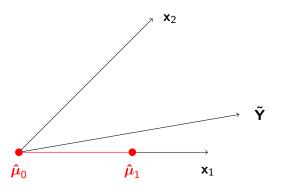
Imperial College Axel Gandy LASSO and related algorithms



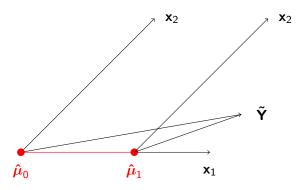
- **\tilde{\mathbf{Y}}** projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- \triangleright $\hat{\mu}_i$ estimate after j-th step.



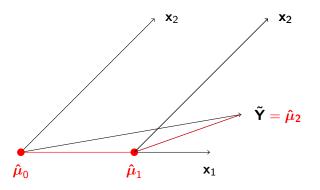
- $ightharpoonup \tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- \triangleright $\hat{\mu}_i$ estimate after j-th step.



- **\tilde{\mathbf{Y}}** projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- \triangleright $\hat{\mu}_i$ estimate after j-th step.



- $ightharpoonup \tilde{\mathbf{Y}}$ projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- \triangleright $\hat{\mu}_i$ estimate after j-th step.

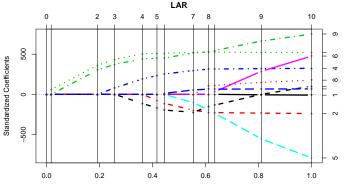


- **\tilde{\mathbf{Y}}** projection of \mathbf{Y} onto the plane spanned by $\mathbf{x}_1, \mathbf{x}_2$.
- \triangleright $\hat{\mu}_i$ estimate after j-th step.

LASSO Penalised Regression LARS algorithm Comments

LARS - Diabetes Data

- ▶ from Efron et al. (2004)
- ▶ 442 patients
- covariates: age, sex, BMI, blood pressure, 6 blood serum measurements
- Response: "a measure of disease progression"

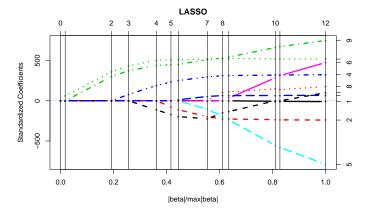


LASSO Modification of the LARS Algorithm

- LARS algorithm needs to be modified to yield all LASSO solutions
- essentially a modification is needed when a β_i crosses 0.

Comments

LASSO - Diabetes Data



Note: now 12 steps instead of 10 with the LARS algorithms

Comments

- R-package: lars
- ▶ A LASSO fit has no more than n-1 (centred) predictors with nonzero coefficient
- Number of operations needed:

$$p < n$$
: $O(p^3 + np^2)$
 $p > n$: $O(n^3 + n^2p)$

Other algorithm: coordinate descent

Comments

Further recent approaches

► Group Lasso

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda \sum_{j} \left(\sum_{\nu \in K_j} |\beta_{\nu}|^2\right)^{1/2} \to \min$$

where K_j are disjoint groups of variables and $\lambda > 0$.

Fused Lasso

$$\|\mathbf{Y} - X\boldsymbol{\beta}\|^2 + \lambda_1 \|\boldsymbol{\beta}\|_1 + \lambda_2 \sum_{(i,j) \in A} |\beta_i - \beta_j| \to \min$$

where
$$A \subset \{1, \ldots, n\}^2$$
 and $\lambda_1, \lambda_2 > 0$.

► Recent "hot" topics: compressed sensing, matrix completion, stability selection.

Part IV

NP complete problems

NP-complete Problems I

- Concerns decision problems
 - ▶ Input: 0-1 sequence of length n
 - Output: "yes" or "no"
- P= class of all decision problems that can be solved in at most polynomial time in n (on a Turing machine)
- NP is the set of decision problems for which a solution can be verified in polynomical time with some additional input of polynomial size.
 - As a consequence: all problems in NP can be solved in exponential time.
- A decision problem is NP-complete if any other decision problem in NP can be reduced to it in polynomial time.

NP-complete Problems II

- There is a large number of NP-complete problems, e.g.
 - ► Travelling Salesman Problem Phrased as decision problem: Let x be some fixed length. Is there a roundtrip for the salesman of length < x?</p>
 - Best subset regression: (phrased as decision problem)

```
(see http://en.wikipedia.org/wiki/List_of_
NP-complete_problems for a long list)
```

It is not clear if P ≠ NP. This is one of the Millennium Prize Problems with a \$1,000,000 prize, see http://www.claymath.org/millennium/P_vs_NP/

Part V

Stochastic Approximation

The Robbins-Monro Algorithm

Example

Stochastic Approximation

Robbins-Monro/Kiefer-Wolfowitz algorithm

- ▶ Want to minimise $z(\theta)$ over $\Theta \subset \mathbb{R}^d$ e.g.: $z(\theta) = \mathsf{E}(f(X,\theta))$, where X is a random vector with known distribution and f is a known function.
- ▶ Iterative algorithm: successive approximations $heta_1, heta_2, \dots$
- Standard approach Gradient Descent:

$$\theta_{n+1} = \theta_n - \epsilon_n \nabla z(\theta_n)$$

for some deterministic sequence ϵ_n .

- Assume that we cannot evaluate $\nabla z(\theta)$ directly.
- Available Y_n "close to" $\nabla z(\theta)$.

 In the Robbins-Monro-algorithm, see Robbins & Monro (1951), one assumes

$$\mathbf{Y}_n = \nabla z(\theta) + \epsilon$$

with $\mathsf{E}(\epsilon) = \mathbf{0}$.

Iteration:

$$\theta_{n+1} = \theta_n - \epsilon_n \mathbf{Y}_{n+1},$$

How to choose ϵ_n ?

$$\boldsymbol{\theta}_{n+1} = \boldsymbol{\theta}_n - \epsilon_n \mathbf{Y}_{n+1}$$

Requirements on ϵ_n

► To be able to reach any point:

$$\sum_{n=0}^{\infty} \epsilon_n = \infty$$

(assuming $E Y_n$ is bounded)

▶ To get convergence of θ_n , need

$$\epsilon_n \rightarrow 0$$

(assuming $Var(Y_n) \not\rightarrow 0$):

Canonical choice: $\epsilon_n = an^{-\delta}$ for some $0 < \delta \le 1$ and some a > 0.

How can one obtain Y_n ?

Some options for $z(\theta) = E(f(\mathbf{X}, \theta))$:

▶ finite differences (Kiefer-Wolfowitz algorithm, Kiefer & Wolfowitz (1952)): Let $M(\theta)$ be such that $E(M(\theta)) = z(\theta)$

$$Y_{n,i} = \frac{M(\theta + c_n) - M(\theta - c_n)}{2c_n}$$

Infinitesimal Perturbation Analysis (IPA)
Main Idea: often $\frac{\partial}{\partial \theta}z(\theta) = \frac{\partial}{\partial \theta} E(f(\mathbf{X}, \theta)) = E(\frac{\partial}{\partial \theta}f(\mathbf{X}, \theta))$.
Define Y_n as Monte Carlo estimate of the RHS:

$$Y_n = \frac{1}{m} \sum_{i=1}^m \frac{\partial}{\partial \theta} f(\mathbf{X}^i, \boldsymbol{\theta})$$

where $\mathbf{X}, \mathbf{X}^1, \dots, \mathbf{X}^m$ is iid.

Stochastic-Approximation - Example

based on (Asmussen & Glynn, 2007, Section VIII 5a)

Minimise

$$z(\theta) = \mathsf{E}[\mathsf{max}(\theta X_1 + X_2, (1 - \theta)X_3)],$$

where $X_i \sim Gamma(2, 2/i), i = 1, ..., 3$ are independent. (the correct minimiser is 0.625)

► Estimate $z'(\theta_n)$ by MC simulation: Note $z'(\theta) = E[g(X_1, X_2, X_3, \theta)]$, where

$$g(x_1, x_2, x_3, \theta) = \begin{cases} x_1 & \theta x_1 + x_2 \ge (1 - \theta)x_3 \\ -x_3 & \text{otherwise} \end{cases}$$

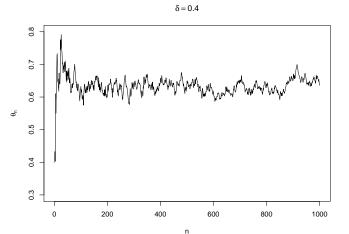
Use the estimator

$$Y_n = \frac{1}{m} \sum_{i=1}^m g(X_1^i, X_2^i, X_3^i, \theta)$$

where $X_i^i \sim X_i$, j = 1, ..., 3, i = 1, ..., m are independent

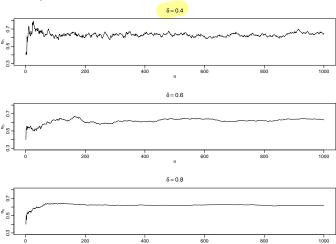
Stochastic-Approximation - one run

$$m = 10$$
, $\epsilon_n = n^{-\delta}/10$, $\theta_0 = 0.4$



Stochastic-Approximation - Sensitivity to θ

Same parameters as before



Stochastic Approximation - Comments

- Very general class of algorithms related to stochastic control.
- Several Parameters need tuning (best done on a case by case basis)
 - ► How many samples m to take at each step? Should m depend n?
 - What ϵ_n to use?
- A lot of theoretical work has been concerned with establishing theoretical properties of these algorithms. Main idea:
 - Relate the sequence the sequence θ_n to the solution $\theta(t)$ of the deterministic dynamical system

$$\frac{\partial}{\partial t}\theta(t) = -\nabla z(\theta(t))$$

and use martingale theory to analyse the differences. See e.g. Kushner & Yin (2003) for details.

► A shorter introduction can be found in e.g. Asmussen & Glynn (2007).

Part VI

Appendix

Topics in the coming lectures:

- MCMC methods
- Bootstrap
- ▶ Particle Filtering

 Imperial College
 Axel Gandy
 Appendix
 61

References I

- Asmussen, S. & Glynn, P. W. (2007). Stochastic Simulation Algorithms and Analysis. Springer.
- Dempster, A. P., Laird, N. M. & Rubin, D. B. (1977). Maximum likelihood from incomplete data via the em algorithm. *Journal of the Royal Statistical Society*. *Series B (Methodological)* 39, 1–38.
- Efron, B., Hastie, T., Johnstone, I. & Tibshirani, R. (2004). Least angle regression. *The Annals of Statistics* **32**, 407–451.
- Kiefer, J. & Wolfowitz, J. (1952). Stochastic estimation of the maximum of a regression function. The Annals of Mathematical Statistics 23, 462–466.
- Kushner, H. J. & Yin, G. (2003). Stochastic Approximation and Recursive Algorithms and Recursive Algorithms and Applications. Springer.
- McLachlan, G. J. & Krishnan, T. (2008). The EM Algorithm and Extensions. Second ed., Wiley.
- Ng, S. K., Krishnan, T. & McLachlan, G. J. (2004). The EM algorithm. In *Computational Statistics* (eds. J. Gentle, W. Härdle & Y. Mori), chap. II.5, 137–168, Springer.

< A ▶

References II

- Robbins, H. & Monro, S. (1951). A stochastic approximation method. *The Annals of Mathematical Statistics* **22**, 400–407.
- Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical Society. Series B (Methodological)* **58**, 267–288.
- Wu, C. F. J. (1983). On the convergence properties of the em algorithm. *The Annals of Statistics* 11, 95–103.

 Imperial College
 Axel Gandy
 Appendix
 63